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Abstract

In this paper we analyse bootstrap procedures for systems cointegration tests with a prior ad-

justment for deterministic terms suggested by Saikkonen & Lütkepohl (2000b) and Saikkonen,

Lütkepohl & Trenkler (2006). The asymptotic properties of the bootstrap test procedures are

derived and their small sample properties are studied. The simulation study also considers the

standard asymptotic test versions and the Johansen cointegration test for comparison.
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1 Introduction

It is known that systems cointegration tests suffer quite often from very poor small sample

properties (compare e.g. Hubrich, Lütkepohl & Saikkonen 2001). In other words, the asymp-

totic test distributions may provide a bad approximation for small sample sizes prevailing in

applied work. Hence, the inference on the number of cointegrating relations among a sys-

tem of variables may be distorted. This applies both to cointegration tests based on Johansen

(1988) but also to test procedures with a prior adjustment for deterministic terms as suggested

by Saikkonen & Lütkepohl (2000b) and Saikkonen et al. (2006).

In the literature, the use of bootstrap methods has been suggested as a possible way to

improve the small sample properties of a test procedure. This usually refers to a test’s size,

since it is not clear what effect bootstrap methods may have on the test’s power (compare e.g.

Davidson & MacKinnon 2006). Improved approximation to the small sample distribution can

be expected if the test statistic is asymptotical pivotal (compare e.g. Horowitz 2001). This is

the case for the cointegration test statistics considerded in this paper. However, doubts have

been raised about the usefulness of bootstrap methods in relation to time series data (compare

e.g. Horowitz 2003, MacKinnon 2002). Obviously, the applicability and properties of bootstrap

procedures are not as favourable as in the case of i.i.d. data due to the dependence structure in

time series. As a response to that one may focus on time series models with i.i.d. error terms.

Nevertheless, different types of bootstrap procedures have been suggested and successfully

applied in the time series framework in order to test for a unit root (see e.g. Basawa, Mallik,

McCormic, Reeves & Taylor 1991, Paparoditis & Politis 2003, Park 2003). In addition, Park

(2003) shows that bootstraps offer asymptotic refinements in finite samples for the ADF unit

root test. The bootstrap algorithm he considers can be regarded as an univariate counterpart

of the algorithms analysed later on. With respect to systems cointegration tests much less is

known about bootstrapping. Based on simulation studies, van Giersbergen (1996), Harris &

Judge (1998), and Mantalos & Shukur (2001) analyse different variants of so-called recursive

and block bootstraps for Johansen cointegration tests. The results of these studies, although

partly mixed, do not show that an application of bootstrap techniques generally improves the

tests’ small sample properties. However, a theoretical justification for the use of bootstrap meth-

ods to test for the cointegrating rank has been recently given by Swensen (2005a). He shows

that recursive bootstrap procedures for the Johansen test have the same limiting distribution as

the asymptotic test versions. Furthermore, his simulation findings demonstrate that bootstrap

procedures can lead to an improvement in the tests’ sizes in small samples.
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We will follow Swensen (2005a) and analyse different variants of recursive bootstrap al-

gorithms for systems cointegration tests with a prior adjustment for deterministic terms which

have been suggested by Saikkonen & Lütkepohl (2000b) and Saikkonen et al. (2006). Both tests

assume that the data generating process can be decomposed into an unobservable zero-mean

stochastic part, which follows a vector autoregressive process, and a deterministic component,

which consists of a level term and a linear trend. Their common idea is to estimate the de-

terministic terms in a first step and to adjust the original time series by these estimated terms.

Then, a likelihood ratio type test in the spirit of Johansen (1988) is applied to the adjusted data.

This model setup requires to introduce bootstrap equivalents of both the deterministic and the

stochastic components. We define these equivalents such that the sum of them produces the

same bootstrap data as are obtained by applying the recursive bootstrap scheme directly to the

observable data. It turns out that the bootstrap tests have the same limiting distributions un-

der the cointegrating rank null hypothesis as the corresponding asymptotic test procedures by

Saikkonen & Lütkepohl (2000b) and Saikkonen et al. (2006). Furthermore, the small sample

properties of the bootstrap procedures are analysed and compared with the ones of the asymp-

totic tests. The comparison also includes the Johansen cointegration test. Thereby we can

compare our findings with the ones of Swensen (2005a, 2005b).

The rest of the paper is structured as follows. The next section describes the system cointe-

gration tests and Section 3 introduces the bootstrap procedures. Their asymptotic properties are

discussed in Section 4. Some simulation results are presented in Section 5 and Section 6 sum-

marizes and concludes. The theoretical derivations and explanations on the response surfaces

are deferred to two Appendices.

The following notation is used throughout. If A is an (n ×m) matrix of full column rank

(n > m), its orthogonal complement A⊥ is an (n × (n −m)) matrix of full column rank and

such that A′A⊥ = 0. Furthermore, let Ā = A(A′A)−1. A (n× n) identity matrix is denoted by

In. LS and GLS are used to abbreviate least squares and generalized least squares respectively,

LR relates to likelihood ratio, RR is short for reduced rank, and DGP refers to data generating

process. The abbreviations r.h.s. and l.h.s. stand for right- and left-hand-side, respectively.

2 Test Procedures

Let us consider a n-dimensional times series yt = (y1t, . . . , ynt)
′ (t = 1, . . . , T ), which is

generated by

yt = µ0 + µ1t + xt, t = 1, 2, . . . , (2.1)
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where µ0 and µ1 are unknown (n× 1) parameter vectors. Hence, the deterministic part consists

of a constant and a linear trend. The term xt is an unobservable stochastic error process, for

which we make the following assumption.

Assumption 1. The process xt is integrated of order at most I(1) with cointegrating rank r and

follows a vector autoregressive process of order p, VAR(p),

xt = A1xt−1 + · · ·+ Apxt−p + εt, t = 1, 2, . . . , (2.2)

where Aj are (n × n) coefficient matrices and the initial values are such that xt = 0, t ≤ 0.

For the error terms we assume εt ∼ i.i.d.(0, Ω) with positive definite covariance matrix Ω and

E(ε4
t ) < ∞. ¤

The initial value condition xt = 0, t ≤ 0, is imposed for convenience to construct the test

by Saikkonen & Lütkepohl (2000b) and the bootstrap versions of this procedure. However, the

asymptotic tests remain valid if the initial values have a fixed probability distribution, which

does not depend on the sample size. Under Assumption 1, the process xt has the usual vector

error correction model (VECM) form

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . ,

where Π and Γj (j = 1, . . . , p − 1) are (n×n) unknown parameter matrices. Because the

cointegrating rank is r, the matrix Π can be written as Π = αβ′, where α and β are (n × r)

matrices of full column rank. Obviously, the cointegrating rank is equal to the rank of the matrix

Π. As is well-known, β′xt and ∆xt are zero mean I(0) processes. Defining Γ = In − Γ1 −
· · · − Γp−1 = In +

∑p−1
j=1 jAj+1 and C = β⊥(α′⊥Γβ⊥)−1α′⊥, we have

xt = C

t∑
j=1

εj + ξt, t = 1, 2, . . . ,

where ξt is a zero mean I(0) process.

Finally, we derive the VECM representation for yt. Multiplying (2.1) by A(L) = In −
A1L− · · · − ApL

p = In∆− ΠL− Γ1∆L− · · · − Γp−1∆Lp−1 and rearranging yields

∆yt = ν + α(β′yt−1 − φ(t− 1)) +

p−1∑
j=1

Γj∆yt−j + εt, t = p + 1, p + 2, . . . , (2.3)

where ν = −Πµ0 + Γµ1 = −αθ + Γµ1, θ = β′µ0, and φ = β′µ1.
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In the following we consider the so-called trace test version, i.e. we aim to test the pair of

hypotheses

H0(r0) : rk(Π) = r0 vs. H1(r0) : rk(Π) > r0. (2.4)

The idea of the test proposal of Saikkonen & Lütkepohl (2000b) is to estimate the determin-

istic terms in a first step by a feasible GLS procedure. Then, yt is adjusted by these estimated

terms. In a second step, a Johansen LR-type test is performed on the adjusted time series. More

precisely, defining

a0t =





1 for t ≥ 1

0 for t ≤ 0
and a1t =





t for t ≥ 1

0 for t ≤ 0

and multiplying (2.1) by A(L) we obtain

A(L)yt = H0tµ0 + H1tµ1 + εt, t = 1, . . . , T, (2.5)

where Hit = A(L)ait (i = 0, 1), and εt = A(L)xt (see (2.2)). Furthermore, define Q such that

QQ′ = Ω−1 and multiply (2.5) by Q′, then we have

Q′A(L)yt = Q′H0tµ0 + Q′H1tµ1 + ηt, t = 1, . . . , T, (2.6)

where ηt =Q′εt. The matrix Q can be chosen as Q=[Ω−1α(α′Ω−1α)−1/2 : α⊥(α′⊥Ω−1α⊥)−1/2].

Hence, the error term ηt has a zero mean and a unit covariance matrix as it is required for a GLS

transformation. To make the GLS estimation feasible, Saikkonen & Lütkepohl (2000b) propose

to use the RR estimators α̃, β̃, Γ̃j (j = 1, . . . , p − 1) and Ω̃ which are obtained from (2.3)

by applying r0, the rank under the null hypothesis of the cointegration test. Based on the RR

estimators, one can compute the estimators Q̃ and H̃it (i = 0, 1). Thus, feasible GLS estimators

of µ0 and µ1, say µ̃0 and µ̃1, are obtained by a multivariate LS estimation of the model

Q̃′Ã(L)yt = Q̃′H̃0tµ0 + Q̃′H̃1tµ1 + η̃t, t = 1, . . . , T. (2.7)

The estimated deterministic terms are used to adjust yt, what gives the sample analogue

x̃t = yt − µ̃0 − µ̃1t of xt. Then, an LR-type test is performed with respect to

∆x̃t = Πx̃t−1 +

p−1∑
j=1

Γj∆x̃t−j + et, t = p + 1, . . . , T, (2.8)

where et is an error term. Since x̃t is adjusted by the deterministic terms, a test version with-

out deterministic terms like in Johansen (1988) is applied. Thus, ∆x̃t and x̃t−1 are regressed

on (∆x̃′t−1, . . . , ∆x̃′t−p−1)
′ to obtain the residuals R̃0t and R̃1t, respectively. Next, consider
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S̃ij = T−1
T∑

t=1

R̃itR̃
′
jt (i, j = 0, 1). Solving det(λS̃11 − S̃10S̃

−1
00 S̃01) = 0 we obtain the ordered

generalized eigenvalues λ̃1 ≥ · · · ≥ λ̃n. Finally, the LR test statistic for the pair of hypotheses

in (2.4) is1

GLS(r0) = −T

n∑
j=r0+1

log(1− λ̃j).

As stated in Theorem 1 of Saikkonen & Lütkepohl (2000b), the level parameter µ0 is not

consistently estimated in the direction of β⊥ because µ0 is not identified in that direction in

(2.3). Therefore, Saikkonen et al. (2006) suggest to avoid the estimation of the level parameter

in the first stage. Instead, only µ1 is estimated and the effect of the level parameter is taken

into account when the test is performed. Defining φ∗ = β′⊥µ1 and noting that φ∗ = β′⊥C(ν −
Γβ(β′β)−1φ), Saikkonen et al. (2006) propose to estimate µ1 by

µ̂1 = β̃(β̃′β̃)−1φ̃ + β̃⊥(β̃′⊥β̃⊥)−1φ̃∗, (2.9)

where β̃, β̃⊥, φ̃, and φ̃∗ = β̃′⊥C̃(ν̃ − Γ̃β̃(β̃′β̃)−1φ̃) are obtained from a RR estimation of (2.3).

Using µ̂1 we adjust yt for a linear trend and obtain

ŷc
t = yt − µ̂1t.

Then, we set up an auxiliary VECM for ŷc
t

∆ŷc
t = α(β′yc

t−1 − θ) +

p−1∑
j=1

Γj∆ŷc
t−j + ec

t , (2.10)

where ec
t is an error term. Finally, an LR-type test, now including a constant term, can be

performed with respect to (2.10). Denoting the corresponding ordered generalized eigenvalues

as λ̂1 ≥ · · · ≥ λ̂n, we obtain the LR test statistic for the pair of hypotheses in (2.4)2

SLT (r0) = −T

n∑
j=r0+1

log(1− λ̂j).

Saikkonen & Lütkepohl (2000b) and Saikkonen et al. (2006) derive the limiting distributions

for GLS(r0) and SLT (r0) given in Theorem 1.

1Note that the generalized eigenvalue problem described here is slightly different from the one in Saikkonen

& Lütkepohl (2000b). However, the eigenvalue problems can be transformed into each other by an appropriate

redefinition of the respective eigenvalues. Hence, the LR statistics based on the two different sets of eigenvalues

are identical apart from minor numerical differences.
2Saikkonen et al. (2006) allow in addition for a level shift at unknown time. The test statistic considered here

can be obtained by deleting all terms associated with the level shift. This has no effect on the limiting distribution.
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Theorem 1. Under Assumption 1 and if H0(r0) is true, then

Pr0,T (GLS(r0) ≤ x) −→ P (tr(DGLS) ≤ x) and Pr0,T (SLT (r0) ≤ x) −→ P (tr(DSLT ) ≤ x)

for all x as T → ∞, where

DGLS =

(∫ 1

0

B∗(s)dB∗(s)′
)′ (∫ 1

0

B∗(s)B∗(s)′ds

)−1 (∫ 1

0

B∗(s)dB∗(s)′
)

,

DSLT =

(∫ 1

0

B+(s)dB∗(s)′
)′ (∫ 1

0

B+(s)B+(s)′ds

)−1 (∫ 1

0

B+(s)dB∗(s)′
)

,

B(s) is a (n−r0)-dimensional standard Brownian motion, B∗(s) = B(s)−sB(1) is a (n−r0)-

dimensional Brownian bridge, B+(s) = [B∗(s)′, 1]′ and dB∗(s) = dB(s)− dsB(1). ¤

Several remarks are worth making regarding this theorem. The probability measures Pr0,T

refer to the the joint distributions of the sample y1, . . . , yT for situations where rk(Π) = r0

(compare Swensen 2005a). With respect to the bootstrap framework we will introduce a further

probability measure conditional on the observations. The limiting distributions for GLS(r0)

and SLT (r0) differ in that the process B+(s) appears in place of the Brownian bridge B∗(s).

Of course, the reason is that an intercept term is included in the auxiliary model on which

LST (r0) is based. On the other hand, the limiting distribution of LST (r0) is formally similar

to its counterpart in Theorem 6.3 of Johansen (1995) where a standard Brownian motion appears

instead of the Brownian bridge in Theorem 1.

3 Bootstrap Algorithms

Swensen (2005a) proposes two variants of a recursive bootstrap related to the VECM (2.3). The

first algorithm to generate the so-called pseudo or bootstrapped observations y∗1, . . . , y
∗
T works

as follows.

Algorithm 1.

(1) Estimate model (2.3) by a RR regression under the rank hypothesis H0(r0) : rk(Π) = r0

in order to obtain estimates α̃, β̃, ν̃, φ̃, and Γ̃j (j = 1, . . . , p− 1).

(2) Check whether the roots of the equation det[Ã(z)] = 0, where

Ã(z) = (1− z)In − α̃β̃′z − Γ̃1(1− z)z − · · · − Γ̃p−1(1− z)zp−1,

are equal to 1 or outside the unit circle and whether α̃′⊥Γ̃β̃⊥ is nonsingular.
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(3) If so, compute the residuals ε̃p+1, . . . , ε̃T from the estimated VECM (2.3).

(4) Compute y∗t , t = p + 1, . . . , T, recursively by

∆y∗t = ν̃ + α̃(β̃′y∗t−1 − φ̃(t− 1)) +

p−1∑
j=1

Γ̃j∆y∗t−j + ε∗t , (3.1)

using the estimates obtained under (1) and sampled residuals ε∗t drawn with replacement

from the estimated residuals ε̃p+1, . . . , ε̃T . The starting values of the recursion, y∗1, . . . , y
∗
p ,

are set equal to y1, . . . , yp.

As usual in the literature, the asterisk refers to quantities related to the bootstrap procedure.

Accordingly, the probability measure P ∗
r0,T refers to the conditional distribution of y∗1, . . . , y

∗
T

given the observations y1, . . . , yT . Now, the subscript r0 indicates that the pseudo observations

are generated by imposing the rank r0. Moreover, note that the pseudo observations y∗1, . . . , y
∗
T

depend on the sample size T . Requirement (ii) assures that the generated pseudo observations

are indeed I(1). If this condition is not satisfied, one may refer to a more appropriate resampling

scheme as pointed out by Swensen (2005a).

The bootstrap test version is then computed by running the same test procedures as described

above with respect to the pseudo series y∗1, . . . , y
∗
T . Let GLS∗1(r0) and SLT ∗

1 (r0) be the respec-

tive bootstrap test statistics and denote the cumulative distribution functions of GLS∗1(r0) and

SLT ∗
1 (r0) by F ∗

r0;GLS,1 and F ∗
r0;SLT,1 respectively. The latter are conditional distributions given

the observations y1, . . . , yT . Then, we reject the null hypothesis of r0 cointegrating relations at

some chosen significance level δ if

1− F ∗
r0;GLS,1(GLS(r0)) ≤ δ (3.2)

in case of the test by Saikkonen & Lütkepohl (2000b) and if

1− F ∗
r0;SLT,1(SLT (r0)) ≤ δ (3.3)

for the test by Saikkonen et al. (2006). The bootstrap distributions are usually very complicated

functions of the observations. Therefore, they are approximated by repeating the bootstrap

algorithm a large number of times, say M .3 Then, we count the number of instances, for which

GLS∗1(r0) > GLS(r0), say MRGLS,1, and for which SLT ∗
1 (r0) > SLT (r0), say MRSLT,1.

Finally, we reject H0(r0) for the bootstrap version of Saikkonen & Lütkepohl (2000b) if

MRGLS,1/M ≤ δ (3.4)
3Davidson & MacKinnon (2000) suggest and analyse procedures to determine M in order to assure an appro-

priate approximation.
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and for the bootstrap test of Saikkonen & Lütkepohl (2000b) if

MRSLT,1/M ≤ δ, (3.5)

respectively. For M → ∞, the expressions (3.4) and (3.5) converge to (3.2) and (3.3) respec-

tively.

The systems cointegration tests are sequentially applied in order to determine the cointe-

grating rank. Usually, one starts with a cointegration rank of zero under the null hypothesis.

The rank chosen is the one for which H0(r0) cannot be rejected the first time given a certain

significance level δ. Although Algorithm 1 can shown to be consistent with respect to a specific

rank null hypothesis, Swensen (2005a) was not able to prove that Algorithm 1 consistently es-

timates the cointegrating rank if it is sequentially applied in connection with the Johansen test.

Therefore, he considers a modification of the algorithm. The problem to be dealt with is that

the bootstrap samples have to be generated for other ranks than the true one if a sequence of

tests is performed. We do not explore the issue of sequential testing in the current framework.

Nevertheless, we also consider the second algorithm proposed by Swensen (2005a), since it is

also valid for a specific rank hypothesis.

Algorithm 2.

(1) Estimate model (2.3) by a RR regression under the rank hypothesis H0(r0) : rk(Π) = r0

in order to obtain the estimates α̃, β̃, and φ̃. The remaining parameters are estimated via

OLS from an unrestricted version of (2.3) setting r = n. Let ν̂ and Γ̂j (j = 1, . . . , p− 1)

be the corresponding estimators.

(2) Check whether the roots of the equation det[Ã(z)] = 0, where

Â(z) = (1− z)In − α̃β̃′z − Γ̂1(1− z)z − · · · − Γ̂p−1(1− z)zp−1,

are equal to 1 or outside the unit circle and whether α̃′⊥Γ̃β̃⊥ is nonsingular.

(3) If so, compute the unrestricted residuals ε̂p+1, . . . , ε̂T based on the OLS estimation in (1).

(4) Compute y∗t , t = p + 1, . . . , T, recursively from

∆y∗t = ν̂ + α̃(β̃′y∗t−1 − φ̃(t− 1)) +

p−1∑
j=1

Γ̂j∆y∗t−j + ε∗t ,

with sampled residuals ε∗t drawn with replacement from the estimated residuals ε̂p+1, . . . ,

ε̂T . The starting values of the recursion, y∗1, . . . , y
∗
p , are set equal to y1, . . . , yp.

8



Note, that the pseudo observations and sampled residuals have the same notational form as in

Algorithm 1 in order to avoid the introduction of additional symbols. Keep in mind that α̃′⊥Γ̂β̃⊥

is nonsingular is true with probability 1, since the estimator Γ̂ is based on the unrestricted OLS

estimators Γ̂j (j = 1, . . . , p− 1) (see Swensen 2005a). The bootstrap tests based on Algorithm

2 are abbreviated as GLS∗2(r0) and SLT ∗
2 (r0)

Instead of considering Algorithms 1 and 2 one may also think of applying a bootstrap di-

rectly to (2.1). However, we have to remember that the unobserved error term xt follows a

VAR process. If this is ignored such that no finite-dimensional parametric model is used in

order to reduce the DGP to independent random sampling, bootstrapping time-series data in-

volves a number of partly unsolved problem (see e.g. Härdle, Horowitz & Kreiß 2003, van

Giersbergen 1996). Most of the problems arise because bootstraps are not able to exactly repli-

cate the dependence structure in the data. This is even relevant for stationary time series. Nev-

ertheless, we may also employ a different bootstrap scheme specific to the test by Saikkonen &

Lütkepohl (2000b). For example, one can base a bootstrap on the residuals from an estimation

of model (2.7). The pseudo observation could then be generated via equations (2.1) and (2.2)

using the relevant parameter estimates and exploiting the relationship ηt = Q′εt and the zero

initial value assumption for xt. However, the simulation results for this algorithm are rather

similar to the results for Algorithm 1. Moreover, the theoretical properties will be much more

difficult to derive. Therefore, we do not consider this algorithm in more detail.

4 Asymptotic Distributions of Bootstrap Tests

In this section we discuss the asymptotic properties of the bootstrap tests SLT ∗
1 (r0), SLT ∗

2 (r0),

GLS∗1(r0) and GLS∗2(r0) by referring to weak convergence in Pr0,T probability. As described

by Swensen (2005a), this means that the conditional distributions converge in Pr0,T probability

given the observations. That is, E∗
P ∗r0,T

[f(X∗)] → EPr0,T
[f(X)] in probability for all bounded

continuous functions f , where E∗
P ∗r0,T

is the expectation conditional on the observations with

respect to the measure P ∗
r0,T . In the following, we use E∗ as an abbreviation for E∗

P ∗r0,T
.

In the following, we describe how to obtain the asymptotic distributions of the SLT ∗
1 (r0)

and GLS∗1(r0) test statistics making use of the results in Swensen (2005a), Saikkonen et al.

(2006), and Saikkonen & Lütkepohl (2000b). To this end, it is helpful to briefly review the

proof for the asymptotic null distributions of SLT (r0) and GLS(r0). The proofs have mainly

three steps.

First, it is shown that the estimators of the deterministic parameters µ̂1, µ̃0, and µ̃1 have the
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following properties.

β′(µ̂1 − µ1) = Op(T
−3/2)

(T − p)1/2β′⊥(µ̂1 − µ1)
d→ N(0, β′⊥CΩC ′β⊥)

β′(µ̃0 − µ0) = Op(T
−1/2)

β′⊥(µ̃0 − µ0) = Op(1)

β′(µ̃1 − µ1) = Op(T
−3/2)

(T − p)1/2β′⊥(µ̃1 − µ1)
d→ N(0, β′⊥CΩC ′β⊥),

where C = β⊥(α′⊥Γβ⊥)−1α′⊥ as before. The precondition for this to hold is that the RR es-

timators based on the VECM (2.3) are consistently estimated with certain rates. Second, the

convergence properties of µ̂1, µ̃0, and µ̃1 assure that the adjusted series ŷc
t = yt − µ̂1t and

x̃t = yt − µ̃0 − µ̃1t can appropriately be used instead of yc
t and xt taking account of some

adjustments. To be precise, an estimation error regarding the trend components remains in

terms of the standardized sample moments involving β′⊥ŷc
t and β′⊥x̂t. This is the reason why

Brownian bridges instead of standard Brownian motions enter the limiting distributions in The-

orem 1. Furthermore, note that it suffices that the estimator µ̃0 is only bounded in probability

in the direction of β⊥ for proving the asymptotic properties of GLS(r0) (see Saikkonen &

Lütkepohl 2000b). Thirdly, the asymptotic distributions are proven as in the case of the stan-

dard Johansen test (compare Johansen 1995, Chs. 10, 11), but now with respect to (2.8) and

(2.10)respectively. Of course, one has to adjust the respective asymptotic expressions.

Saikkonen & Lütkepohl (2000b) do not follow exactly the proof of Johansen (1995) regard-

ing the GLS test. Instead, they base their considerations on an auxiliary model related to an LM

cointegration test. However, the framework of Swensen (2005a) is the direct bootstrap coun-

terpart of Johansen (1995). Therefore, we follow Johansen (1995) in order to easily apply the

results of Swensen (2005a).

Lemma 1 in Swensen (2005a) shows that a Granger representation theorem exists for the

pseudo data generated by Algorithms 1 or 2 and that the random process ST (s) = (T −
p)−1/2

∑[sT ]
i=k+1 ε∗i , 0 ≤ s ≤ 1, converges in P ∗

r0,T distributions toward a n-dimensional Brown-

ian motion W with covariance matrix Ω. Furthermore, according to Lemmas 2 and 3 in Swensen

(2005a), the relevant sample moments based on the bootstrapped series converge weakly in

Pr0,T probability to the same limit expressions as the sample moments defined in terms of the

observations. Thus, the limiting distribution results for the asymptotic test also hold for the

bootstrapped Johansen test. Note that Lemmas 1-3 are actually proven in conjunction with Al-

gorithm 2. However, they are also valid in case of Algorithm 1 as described in Remark 9 of
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Swensen (2005a).

The first important step in combining the results of Swensen (2005a) on the one side and

Saikkonen et al. (2006) and Saikkonen & Lütkepohl (2000b) on the other side is to express the

bootstrap framework also in terms of the process xt and the deterministic components. This is

necessary because the test procedures of Saikkonen et al. (2006) and Saikkonen & Lütkepohl

(2000b) involve xt and yc
t and their sample analogs x̃t and ŷc

t . Accordingly, the asymptotic

derivations refer to these quantities. The goal is to obtain pseudo series x∗t and yc∗
t such that

y∗t = x∗t + µ∗0 + µ∗1t = yc∗
t + µ∗1t. This allows one to apply the SLT and GLS test procedures

to the pseudo data y∗t while having appropriate bootstrap versions of yc
t and xt. The quantities

µ∗0 and µ∗1 are estimators of µ0 and µ1 based on the original observations. They have to follow

certain restrictions as described below. Conditional on the observations we may regard µ∗0 and

µ∗1 as parameters.

In a second step, we have to derive Granger representations for x∗t and yc∗
t . Based on these

representations and the properties of the bootstrap estimators of µ∗0 and µ∗1, we can derive the

limiting distributions of SLT ∗
1 (r0) and GLS∗1(r0). The proofs have the same structure as in the

case of the asymptotic test procedures and we will, in fact, obtain the same limiting distributions

as in Theorem 1.

Let us now consider the bootstrap algorithm related to xt. Define the starting values x∗t =

yt − µ∗0 − µ∗1t for (t = 1, . . . , p). Then, based on x∗1, . . . , x
∗
p, the pseudo series x∗t is recursively

generated according to

∆x∗t = α̃β̃′x∗t−1 +

p−1∑
j=1

Γ̃j∆x∗t−j + ε∗t , t = p + 1, . . . , T, (4.1)

where the same RR estimators α̃, β̃, Γ̃i (i = 1, . . . , p), and sampled residuals ε∗t are used as for

producing y∗t . It can be shown that x∗t + µ∗0 + µ∗1t = y∗t (t = 1, . . . , T ) if µ∗0 and µ∗1 satisfy the

following conditions

ν̃ = −α̃β̃′µ∗0 + Γ̃µ∗1 = −α̃θ∗ + Γ̃µ∗1

φ̃ = β̃′µ∗1.
(4.2)

These conditions exactly correspond to the restrictions underlying the parameters ν and φ

of the VECM (2.3). Similarly, we can uniquely recover θ∗ = β̃′µ∗0 and µ∗1 from the parameter

estimates of (2.3). We obtain θ∗ = θ̃ = (α̃′α̃)−1α̃′(Γ̃µ̂1 − ν̃) and µ∗1 = µ̂1 as defined in (2.9).

However, µ∗0 is not identified in the direction of β̃⊥ by the conditions (4.2). This corresponds to

the fact that β′⊥µ0 is not identified in (2.3). The reason is that ν does not change if β′⊥µ0 changes

11



(compare Saikkonen & Lütkepohl 2000b). Accordingly, the bootstrap level parameter µ∗0 is not

identified since the bootstrap algorithm 1 is based on the estimated VECM for yt. To obtain a

unique µ∗0 and, thus, a unique version of x∗t we have to suggest an estimator for θ∗ = β′⊥µ0, say

θ̃∗. The asymptotic analysis presented later on shows that it is sufficient to consider an estimator

that is bounded in Pr0,T probability.

The bootstrap parameter θ∗ can be estimated from the first p observations based on (2.7),

but only from the first p observations since H̃0tβ̃⊥(β̃′⊥β̃⊥)−1 = 0 for t ≥ p + 1. Therefore, the

estimator cannot be consistent but is bounded in Pr0,T probability (see further below). To be

precise, (2.7) is rewritten as

Q̃′Ã(L)yt = Q̃′H̃0tβ̃⊥(β̃′⊥β̃⊥)−1β̃′⊥µ0 + Q̃′H̃0tβ̃(β̃′β̃)−1β̃′µ0 + Q̃′H̃1tµ1 + η̃t.

Following Saikkonen & Lütkepohl (2000b, Proof of Theorem 1), the LS estimator θ̃∗ = β̃′⊥µ̃0

of θ∗ = β̃′⊥µ0 is derived from this regression model. We do not give an explicit expression

for θ̃∗ because it will look rather complicated. Since β⊥ is consistently estimated by β̃⊥, θ̃∗

can also be regarded as an estimator of θ∗. Using the decomposition (compare Lütkepohl &

Saikkonen 2000, Equation (4.6))

µ̂0 = β̃⊥(β̃′⊥β̃⊥)−1θ̃∗ + β̃(β̃′β̃)−1θ̃ (4.3)

a version of µ∗0 is obtained that satisfies (4.2). Furthermore, we define θ∗∗ = θ̃∗ = β̃′⊥µ∗0 in line

with θ∗ = θ̃ = β̃′µ∗0. Hence, we have the following bootstrap model framework summarized in

Assumption 2.

Assumption 2. Let the bootstrap series y∗t be generated by y∗t = x∗t + µ∗0 + µ∗1t, t = 1, . . . , T ,

where x∗t is determined by (4.1). Moreover, µ∗0 = µ̂0 and µ∗1 = µ̂1 are explicit parameter vectors

conditional on the observations which satisfy the conditions (4.2). ¤

One may also generate y∗t by y∗t = y∗ct + µ∗1t using the pseudo series y∗ct . The latter one can

be obtained via a corresponding VECM. This approach, however, is only useful with respect

to the SLT ∗ tests since the GLS∗-framework requires a bootstrap equivalent of µ∗0. Moreover,

note that the deterministic parameters chosen for the initialization of the bootstrap series x∗t and

used for y∗t = x∗t + µ∗0 + µ∗1t (t = 1, . . . , T ) are exactly the same. Initializing the bootstrap with

the true parameters µ0 and µ1, i.e. using x1, . . . , xp as starting values, and adding the estimated

deterministics µ∗0 +µ∗1t to x∗t does not produce y∗t (t = 1, . . . , T ) of Algorithm 1. Instead, some

other bootstrap version of yt is obtained, which the test procedures would have been applied to.
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However, this approach is not possible since we do not know x1, . . . , xp. Therefore, we refer

to the algorithm described above, which is a feasible framework to generate bootstrap observa-

tions x∗t and y∗ct that have the following Granger representations stated in the next Lemma.

Lemma 1. Under Assumptions 1 and 2, the bootstrap elements x∗t and yc∗
t have the following

representations

x∗t = C̃

t∑
i=p+1

ε∗i +
√

TR0∗
t,T , t = p + 1, . . . , T, (4.4)

and

yc∗
t = C̃

t∑
i=p+1

ε∗i + τ ∗0 +
√

TRc∗
t,T , t = p + 1, . . . , T, (4.5)

where for all η > 0, P ∗(maxp+1≤t≤T |Rc∗
t,T | > η) → 0 and P ∗(maxp+1≤t≤T |R0∗

t,T | > η) → 0 in

Pr0,T probability as T → ∞, | · | is the Euclidean norm, C̃ = β̃⊥(α̃′⊥Γ̃β̃⊥)−1α̃′⊥, and τ ∗0 = ¯̃βθ∗.

Moreover, E∗[ε∗t ε
∗′
t ] = Ω̃T → Ω in Pr0,T probability as T →∞. ¤

The proof of Lemma 1 in Appendix A shows that (4.4) is obtained from Swensen (2005a,

Lemma1) by setting the parameter estimates related to the deterministic terms to zero. This

is the case although β̃′⊥x∗p enters the term
√

TR0∗
t,T . Note that β̃′⊥(x∗p − xp) is only bounded in

Pr0,T probability since x∗p = xp − (µ∗0 − µ0) − (µ∗1 − µ1)p and β̃′⊥µ∗0 = θ∗∗ = θ∗ + Op(1) (see

Saikkonen & Lütkepohl 2000b, Eq. (A2)). As explained in the proof, however, β̃′⊥x∗p needs

only to be bounded in Pr0,T probability to assure that the result for R0∗
t,T holds. Finally, the

representation for yc∗
t is derived by adding µ∗0 to x∗t .

Given Lemma 1, we can now discuss the derivation of the limiting distribution of the boot-

strap cointegration tests. Let us start with the SLT ∗
1 test. Applying this test procedure to the

bootstrap data y∗t delivers the estimator µ̂∗1 = β̃∗(β̃∗′β̃∗)−1φ̃∗ + β̃∗⊥(β̃∗′⊥ β̃∗⊥)−1φ̃∗∗ for the ’boot-

strap trend parameter’ µ∗1, where β̃∗, β̃∗⊥, φ̃∗, and φ̃∗∗ are RR estimators based on the VECM

(3.1). Accordingly, the series yc
t = yt − µ1t and ŷc

t = yt − µ̂1t have their respective bootstrap

counterparts defined by yc∗
t = y∗t − µ∗1t and ŷc∗

t = y∗t − µ̂∗1t. Consequently, yc∗
t and ŷc∗

t replace

yc
t and ŷc

t in the proof of the limiting distribution. From these relations it is obvious that µ̂∗1 is

the relevant estimator of µ∗1 and that the asymptotic properties of µ̂∗1 in relation to µ∗1 have to be

determined. To this end, we first derive the necessary asymptotic results for the RR estimators

of the parameters in the VECM (3.1) conditional on the observations, i.e. with respect to the

measure P ∗
r0,T . Given that, we obtain the conditional convergence and distributional properties

of the estimator µ̂∗1 in relation to µ∗1. These properties corresponds exactly to the ones of µ̂1 re-
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garding µ1. Hence, we can appropriately work with the adjusted bootstrap series ŷc∗
t and apply

an LR-type test to

∆ŷc∗
t = α̃(β̃′ŷc∗

t−1 − θ∗) +

p−1∑
j=1

Γ̃j∆ŷc∗
t−j + ec∗

t , (4.6)

where ec∗
t is an error term defined after (A.40) in Appendix A. Then, using Lemma 1 and the

results of Swensen (2005a) we derive the asymptotic properties of the relevant quantities re-

garding the measure Pr0,T . To this end, we follow again the setup of Johansen (1995, Chs. 10,

11) and obtain the limiting distribution given in Proposition 1. The details of the proof can be

found in Appendix A.

Proposition 1. Under Assumptions 1 and 2 and if H0(r0) is true, then

P ∗
r0,T (SLT ∗

1 (r0) ≤ x) −→ P (tr(DSLT ) ≤ x),

in Pr0,T probability for all x as T → ∞, where DGLS and DSLT are defined as in Theorem 1.¤

Let us turn to the GLS∗1 test. First, we have to discuss whether the inconsistency of β̃′⊥x∗p

with respect to β̃′⊥x∗p and the inconsistent estimation of the level of y∗t have an impact on the

limiting distribution of GLS∗1(r0). Given that β̃′⊥x∗p is bounded in Pr0,T probability it should

be clear that it is bounded conditionally on the observations even if T → ∞. In addition, we

will not be able to estimate the level of y∗t consistently in the direction of β̃⊥ conditional on

the observations, i.e. θ̃∗∗ = β̃∗′⊥ µ̃∗0 is only a bounded estimator of θ∗∗ in P ∗
r0,T probability. Thus,

with respect to the estimated version of x∗t , say x̃∗t , an error that is bounded conditional on the

observation and a bounded error in P ∗
r0,T probability are added up: the estimation errors regard-

ing β̃′⊥(x∗p − xp) and β̃∗′⊥(x̃∗t − x∗t ). However, this does not cause additional problems since the

joint error remains bounded in P ∗
r0,T probability. In this case, the applied normalizations of the

sample moments involving β̃′⊥x̃∗t assure that the joint error has no asymptotic effect conditional

on the observations. Accordingly, the limit expressions of the respective sample moments re-

garding the measure Pr0,T are not either affected. Hence, it suffices if the estimation errors

regarding the levels of β′⊥yt and β̃′⊥y∗t are bounded in Pr0,T and P ∗
r0,T probability respectively.
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Applying the GLS test procedure to the bootstrap data results in the following framework

y∗t = µ∗0 + µ∗1t + x∗t , (4.7)

Ã(L)y∗t = Ã(L)µ∗0 + Ã(L)µ∗1t + ε∗t , (4.8)

Q̃′Ã(L)y∗t = Q̃′H̃0tµ
∗
0 + Q̃′H̃1tµ

∗
1 + η∗t , η∗t = Q̃′ε∗t , (4.9)

Q̃∗′Ã∗(L)y∗t = Q̃∗′H̃∗
0tµ

∗
0 + Q̃∗′H̃∗

1tµ
∗
1 + η̃∗t , (4.10)

which comprises the bootstrap analogues to (2.1), (2.5), (2.6) and (2.7) respectively. The error

terms η̃∗t are defined in Appendix A after equation (A.50). Note, that we apply the estimators

Q̃∗, Ã∗(L), H̃∗
it (i = 1, 2) in (4.10), which are computed using the generated pseudo data. Thus,

we estimate µ∗0 and µ∗1 from (4.10) and denote the respective estimators by µ̃∗0 and µ̃∗1.

The time index for (4.7)-(4.10) covers t = 1, . . . , T . Thus, (4.8) is another representation

of the pseudo observations with respect to the bootstrap error terms ε∗t (t = p + 1, . . . , T )

of Algorithm 1 and the implicit bootstrap error terms ε∗1, . . . ε
∗
p. The latter are obtained by

assuming x∗t = 0 for t = 0, . . . ,−p + 1. In fact, we require bootstrap error terms for the

first p data points and need to know their properties in order to derive the properties of the

estimator θ̃∗∗ conditional on the observations. Corresponding to the setup of the asymptotic

test, the bootstrap level parameter can be estimated in the direction of β̃⊥ only from the first p

(transformed) bootstrap observations. Given that

x∗t = xt − (µ∗0 − µ0)− (µ∗1 − µ1)t, t = 1, . . . , p, (4.11)

and the zero initial value assumption for both xt and x∗t , we have

Ã(L)x∗t = ε∗t = Ã(L)xt − H̃0t(µ
∗
0 − µ0)− H̃1t(µ

∗
1 − µ1), t = 1, . . . , p

= εt − (A(L)− Ã(L))xt − H̃0t(µ
∗
0 − µ0)− H̃1t(µ

∗
1 − µ1).

(4.12)

Obviously, the implicit bootstrap error terms ε∗1, . . . , ε
∗
p are not random conditional on the

observations although their true values are not known. Hence, E∗(ε∗t ) = ε∗t 6= 0 in general for

t = 1, . . . , p. However, the non-randomness should not cause any problems for two reasons.

First, we only require θ̃∗∗ to be bounded in P ∗
r0,T probability. Note that θ̃∗∗ depends on ε∗1, . . . , ε

∗
p

but is still random conditional on the observations because the transformation in (4.10) involves

estimators that are random conditional on the observations. Second, θ̃∗∗ has no effect on the

asymptotic properties of the other estimators β̃∗′µ̃∗0 and µ̃∗1 (compare Saikkonen & Lütkepohl

2000b, Proof of Theorem 1). Therefore, we can ignore the first p observations regarding these

estimators.
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Now, the proof regarding GLS∗1(r0) runs as follows. Based on the necessary asymptotic re-

sults for the RR estimators of the parameters in the VECM (3.1) we obtain the conditional con-

vergence and distributional properties of the estimators µ̃∗0 and µ̃∗1. These properties correspond

exactly to the ones of µ̃0 and µ̃1 in relation to µ0 and µ1, e.g. β̃′⊥(µ̃∗0 − µ∗0) = O∗
p(1) is obtained.

Hence, we can appropriately work with the adjusted bootstrap series x̃∗t = y∗t − µ̃∗0 − µ̃∗1t and

apply an LR-type test to

∆x̃∗t = α̃β̃′x̃∗t−1 +

p−1∑
j=1

Γ̃j∆x̃∗t−j + e∗t , (4.13)

where e∗t is an error term defined in the Appendix. Then, as for SLT ∗
1 (r0), we refer to Lemma

1 and the results of Swensen (2005a) and obtain the asymptotic properties of the relevant quan-

tities regarding the measure Pr0,T leading to

Proposition 2. Under Assumptions 1 and 2, assuming x∗t = 0 for t = 0, . . . ,−p + 1, and if

H0(r0) is true, then

P ∗
r0,T (GLS∗1(r0) ≤ x) −→ P (tr(DGLS) ≤ x),

in Pr0,T probability for all x as T → ∞, where DGLS and DSLT are defined as in Theorem 1.¤

The details of the proof of Proposition 2 are given in Appendix A.

When applying Algorithm 2 we have to use the unrestricted estimators ν̂ and Γ̂i (i =

1, . . . , p−1) and the residuals ε̂t in order to generate x∗t . Furthermore, the conditions for the es-

timators θ∗ and µ∗1 have to be adjusted. The first equation of (4.2) now reads as ν̂ = −α̃θ∗+Γ̂µ∗1

such that θ̂ = (α̃′α̃)−1α̃′(Γ̂µ̂1 − ν̂) can be used for θ∗ and to obtain an appropriate version of

µ∗0. Accordingly, we adjust Assumption 2 and Lemma 1. Otherwise, we go through to the same

steps as above to show that SLT ∗
2 (r0) and GLS∗2(r0) have the same limiting distribution as

SLT ∗
1 (r0) and GLS∗1(r0) respectively.

5 Monte Carlo Study

In this section we analyse and compare the small sample properties of the bootstrap and asymp-

totic test versions. To this end, we first use a VAR(1) process suggested by Toda (1994, 1995),

which was also applied by a couple of other authors in order to study the properties of cointe-

gration tests (e.g. Hubrich et al. 2001, Trenkler 2002). The process has the following structure
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xt =A1xt−1 + εt =


 A 0

0 In−r


xt−1+ εt, εt ∼ iid N





 0

0


 ,


 Ir Θ

Θ′ In−r




 , (5.1)

where A = diag(a1, . . . , ar) is a (r×r) diagonal matrix and Θ is a (r×(n−r)) matrix describing

the correlation between the stationary and nonstationary components. Other VAR(1) processes

of interest can be obtained from (5.1) by linear transformations which leave the analysed LR

tests invariant (see Toda 1994, 1995). Specifically, I will consider bivariate processes. In this

case, if r = 0, A and Θ vanish and the process consists of two nonstationary components. If

the cointegrating rank is 1, A = a1 with |a1| < 1 and Θ = θ is a scalar which represents the

instantaneous correlation between the two components.

In the simulations the parameter values of the constant and the linear trend are zero, i.e.,

µi = 0 (i = 0, 1) throughout. This is done because the results of the tests, with the exception

of the bootstrap tests based on Algorithm 2, are invariant to the specific parameter values of

the deterministic components they allow for. The bootstrap tests based on Algorithm 2 are not

invariant to the value of µ0 since the constant is estimated using an unrestricted VAR model.

In other words, the constant is not estimated under the appropriate rank specification so that

changes in µ0 are not perfectly captured by the corresponding estimator. Nevertheless, the

differences in the results in response to changes in µ0 are very small. Therefore, we keep

yt = xt for all tests in the simulations.

The process (5.1) is a rather simple one. On the one hand, this allows to control the param-

eters of interest and, thereby, the properties of the DGP rather easily. On the other hand, (5.1)

may be a quite unrealistic setup compared to empirical applications where richer autoregressive

dynamics and error term cross-correlation structures are often present. Therefore, we use a data-

based DGP in order to study the test properties for more complex processes. Our DGP refers

to an empirical study by King, Plosser, Stock & Watson (1991), in which they analyse a small

macroeconomic model for the U.S.. It consists of per-capita private real GNP (total GNP less

real total government purchases of goods and services), per-capita real consumption, and per-

capita gross private domestic fixed investment. Based on their recommendations we estimate a

VECM with one lag and two cointegrating relationships using quarterly data in logarithms for

the period 1949:1-1988:4. In other words, we consider a three-dimensional VAR(2) model. The

two cointegrating relations describe the differences between GNP on the one side and consump-

tion and investment on the other side. Hence, we specify restricted cointegrating relationships

as implied by the real-business-cycle model to which King et al. (1991) refer. In order to re-
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duce the impact of estimates of possibly insignificant parameters, a subset VECM with zero

restrictions has been estimated. The subset restrictions have been searched for by a Top-Down

strategy employing the Akaike Information Criterion (AIC) (see e.g. Brüggemann 2004, Chap-

ter 3). Using the AIC avoids the occurrence of too many zero restrictions. All computations

have been done with the econometric software program JMulTi (Lütkepohl & Krätzig 2004).

We obtain the following estimated process, which is used for the simulations4

∆yt =



−0.038

−0.186

0.032


+




0 −0.026

0.217 −0.150

0.126 0


·


1 0 −1

0 1 −1


yt−1+




0 0 0.154

0 0.282 0.660

0.272 0.162 0


∆yt−1

+ εt, εt ∼ iid N







0

0

0


 , 10−4




0.588 0.821 0.465

0.821 4.870 1.688

0.465 1.688 1.376





 .

(5.2)

The computations for the simulation study are performed by using programs written in

GAUSS V6 for Windows. The RNDNS function with a fixed seed has been used to generate

standard normally distributed random numbers. The number of replications is R = 1000, i.e. we

generate 1000 different sets of multivariate random numbers. Note that we use the same random

numbers for each set of parameter values. Accordingly, the test statistics are applied to the same

time series for a given set of parameter values. Thus, the rejection frequencies reported later on

are not independent, but they can be compared directly. We consider sample sizes of T = 50,

T = 100, and T = 200. In addition to these sample sizes we use a zero starting value for the

two components of the Toda processes (5.1). With respect to the data-dependent KPSW-DGP

(5.2) two starting values for each of the three series are taken from the original data.

The simulations are performed with respect to 1%, 5%, and 10% significance levels. How-

ever, the presentation focuses on the 5% level, since the relative results are very similar for

the other significance levels. The rejection frequencies of the asymptotic GLS and JOH tests

are based on asymptotic critical values computed from response surfaces given in Trenkler

(2004) and Doornik (1998) respectively. These response surfaces make use of the fact that the

asymptotic null distributions can be quite well approximated by Gamma distributions. The co-

efficients of a corresponding response surface for the SLT test are presented in Appendix B.
4For the simulation program the parameters are stored as 8-bit, double precision. This assures that the charac-

teristic roots obey the restrictions imposed on the DGP.
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We use the response surface critical values, since they deliver a more accurate approximation of

the tests’ asymptotic properties than the standard tabulated critical values (see Doornik 1998).

With respect to the bootstrap tests, we use the upper δ%-quantile (δ = 1, 5, 10) of the empirical

bootstrap distribution based on M = 1000 bootstrap replications. We hope that this number of

replications is large enough for a reasonable approximation of the relevant bootstrap distribu-

tions F ∗
r0;GLS,1, F ∗

r0;SLT,1, etc..

Note, that the tests were not performed sequentially in the simulations. Thus, the results for

testing H0(1) : rk(Π) = 1 are not conditioned on the outcome of the test of H0(0) : rk(Π) = 0

etc.. Finally, we do not report size adjusted rejection frequencies with respect to the power of

the tests since such an adjustment is not possible in applied work.

The results for different versions of the bivariate Toda-DGP (5.1) are collected in Tables 1

and 2 and for the data-dependent KPSW-DGP (5.2) in Table 3. Tables 1 and 3 (Panel A) contain

the rejection frequencies of the tests for a correct null hypothesis. We will use the term size with

respect to these frequencies, although this use does not coincide with the exact definition of

the size of a test. The definition would require to maximize the power function over the whole

parameter space associated with the null hypothesis. This parameter space contains the nuisance

parameters in the test statistics’ small sample distributions. However, such a maximization is

not done in our simulation framework.

In order to evaluate whether the tests keep the nominal size and whether the rejection fre-

quencies of two tests are significantly different we may refer to an approach suggested by

Paruolo (2001). He notes that for an increasing number of replications R, the Monte Carlo

rejection frequencies of two tests (p̂1, p̂2) converge to a bivariate normal distribution

√
R





p̂1

p̂2


−


p1

p2





 d→ N





0

0


 ,


p1(1− p1) τ

τ p2(1− p2)





 , (5.3)

where p1 and p2 are the true rejection probabilities of the tests with respect to the DGP consid-

ered. These are, in fact, the probabilities we aim to approximate by the Monte Carlo experiment.

For the covariance we have τ = γ − p1p2, where γ is the probability of joint rejections of both

tests.

Based on (5.3) we test whether the tests keep the nominal size of 5%. It follows that the

standard error of the estimator p̂1 for the true rejection probability p1 is sp1 =
√

p1(1− p1)/R.

Thus, if a Monte Carlo rejection frequency for a true null rank hypothesis is outside the band

[0.0365, 0.0635], it is not in line with the nominal size level of 5%.
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We also use (5.3) for a comparison of the rejection frequencies of the corresponding asymp-

totic and bootstrap tests. First note that
√

R(p̂1 − p̂2) has an asymptotic variance equal to

p1(1 − p1) + p2(1 − p2) − 2τ . Using the Monte Carlo rejection frequencies p̂1, p̂2, and τ̂ as

(consistent) estimators we test whether p1 and p2 are equal by considering the statistic

z =

(
R

p̂1(1− p̂1) + p̂2(1− p̂2)− 2τ̂

) 1
2

(p̂1 − p̂2)
d→ N(0, 1), (5.4)

(see Paruolo 2001). We can apply (5.4) because all tests are based on the same generated time

series for a given set of parameter values. However, (5.3) and (5.4) ignore the uncertainty

regarding the computation of the critical values based on the bootstrap and response surface

simulations. Therefore, we should regard (5.4) only as a test approximation, since we are not

able to incorporate the mentioned simulation uncertainty into the statistic z.

To decide whether a bootstrap test has a preferable small sample power, we just have to

test whether its power is significantly higher than the small sample power of the corresponding

asymptotic test version. Of course, a significant deterioration is tested for in an analogous way.

In order to study the relative size properties we have to take account of the nominal significance

level as the benchmark. Referring to a 5% nominal level, bootstrapping significantly reduces

the difference between the true and nominal probabilities of rejecting a correct null hypothesis

in the following three cases.

a) Both size values are not larger than 0.05. The size of the bootstrap test is significantly

higher than the size of the asymptotic test.

b) Both size values are not smaller than 0.05. The size of the bootstrap test is significantly

lower than the size of the asymptotic test.

c) One size value is above and the other one is below 0.05. The size values differ signifi-

cantly and the size of the asymptotic test is significantly different from the nominal level

while the size of the bootstrap test is not.

In c) one may skip the requirement that the size values differ significantly. Of course, one can

setup a corresponding set of conditions for a significant deterioration in the tests’ sizes. We

apply a 5% level to test for significant differences between two rejection frequencies.

With respect to the Toda-DGPs we see in Table 1 that significant improvements in the tests’

sizes are possible if the bootstrap test versions are applied. This is especially apparent for

processes with a true cointegrating rank of r = 1 for which the sizes of the asymptotic tests quite
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Table 2. Rejection Frequencies of Tests for Bivariate Toda-DGP (5.1) with True Cointegrating
Rank r = 1, Rank under H0 is r0 = 0, VAR Order p = 1, θ = 0.8, Nominal Significance Level
0.05

Panel A: a1 = 0.9 Panel B: a1 = 0.7

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

GLS 0.153 0.474 0.928 0.722 0.964 1.000

GLS∗1 0.152 0.480 0.929 0.722 0.963 1.000

GLS∗2 0.155 0.471 0.927 0.723 0.963 1.000

SLT 0.175 0.518 0.963 0.801 0.993 1.000

SLT ∗
1 0.161− 0.503− 0.961 0.783− 0.992 1.000

SLT ∗
2 0.155− 0.501− 0.959 0.778− 0.993 1.000

JOH 0.138 0.395 0.929 0.738 0.998 1.000

JOH∗
1 0.123− 0.387 0.928 0.715− 0.997 1.000

JOH∗
2 0.126− 0.375− 0.928 0.720− 0.998 1.000

Note: Significant improvements at the 5% level of the bootstrap tests’ rejection rates with respect to the

corresponding asymptotic tests’ rejections are indicated by + and significant deteriorations by −. The

tests are based on an approximation ignoring uncertainty involved in the bootstrap simulations and the

computation of the critical values.

often deviate significantly from the 5% level (see Panels B and C in Table 1). By contrast, for

DGPs with r = 0 the sizes of the asymptotic test are much more in line with the nominal level.

Nevertheless, we find that the bootstrap tests reject sometimes too often such that significant

deteriorations may occur as in case of GLS∗2 (see Panels B and C in Table 1).

We have also performed simulations with a1 equal to 0.8, 0.6 and 0.5 in order to evaluate

whether the parameter a1 has a systematic impact on whether and how the application of boot-

strap tests may improve the tests’ sizes. Our overall conclusion is that the values of a1 seem

to be less important in these respects than e.g. the sample size T . Interestingly, the most pro-

nounced improvements occur for T = 50 in case of SLT ∗
1 , SLT ∗

2 , JOH∗
1 , and JOH∗

1 , although

we also observe a number of significant improvements in case of T = 200. Regarding GLS∗1

and GLS∗2 most of the improvements are observed for T = 100, while GLS∗2 tend to overreject

for larger values of a1.

Table 2 displays the small sample power for the case of a true cointegrating rank of r = 1

(a1 = 0.9 and a1 = 0.7) if the null hypothesis H0(r0) : r0 = 0 is tested. It seems to be
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obvious that no gain in small sample power should be expected when applying the bootstrap

tests. In case of SLT ∗
1 , SLT ∗

2 , JOH∗
1 , and JOH∗

1 even significant reductions occur. Of course,

a size adjustment would slightly improve the relative performance of the bootstrap test versions,

since their sizes for the corresponding DGPs are in general a bit lower than the ones of the

asymptotic tests (compare Table 1, Panel A). Interestingly, the instances of significant size

reductions regarding SLT ∗
1 , SLT ∗

2 , JOH∗
1 , and JOH∗

1 correspond quite well to the cases where

significant power losses occur.

The relative performance of the bootstrap tests becomes somewhat worse if we consider

the results for the data-dependent KPSW-DGP (5.2), which are summarized in Table 3. In

particular, bootstrap Algorithm 2 produces inferior results both for the size and the small sample

power. This is especially apparent for GLS∗2 , which suffers from excessive size distortions and

a very low power. A closer inspection of the respective bootstrap iterations points to problems

with the estimation of the deterministic terms. The adjusted series have a mean clearly different

from zero. Compared to the simpler Toda-DGPs and the asymptotic GLS test these deviations

are much more pronounced. That may explain the poor performance of GLS∗2 . Nevertheless,

the size for GLS∗1 are preferable compared to GLS. This also applies to the small sample power

if the case r0 = 1 (Panel B) is considered.

The respective sizes of the SLT and SLT ∗
1 and the JOH and JOH∗

1 tests are approximately

the same. In general, we observe a lower power level for the bootstrap tests. In case of SLT ∗
2

and JOH∗
2 the lower power might be attributable to their lower sizes. However, taken into

account the results for SLT ∗
1 and JOH∗

1 the size differences seem only to explain some portion

of the drop in the powers of the tests based on Algorithm 2.

Comparing the different test proposals we find that no test outperforms the other ones. The

only notable exception might be that SLT and JOH are generally preferable to GLS in terms

of the small sample power. This also applies to the corresponding bootstrap test versions.

Finally, we study the correlation between the asymptotic and bootstrap tests’ decisions.

This should help to answer the question whether applied researchers have to expect mixed

signals when using both the bootstrap and the asymptotic test versions. To asses the relationship

between the rejections of two tests we first compute the proportion of joint rejections (γ̂) with

respect to the lower rejection frequency, p̂l = min(p̂1, p̂2). Hence, we obtain the ratio r̂ =

γ̂/p̂l, which measures the degree to which the higher rejection frequency of one test is due

to additional rejections. Thus, a low value of r̂ means that the test with the lower number of

rejections rejects the null hypothesis in many simulation iterations in which the other test does

not.
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Table 4. Relationship Between Test Rejections for Bivariate Toda-DGP with True Cointegrating
Rank r = 1 (a1 = 0.9), VAR Order p = 1, θ = 0.8, Nominal Significance Level 0.05

H0 : r0 = 1 H0 : r0 = 0

r̂/ρ̂ T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

GLS/GLS∗1 1.00/0.82 1.00/0.75 1.00/0.78 0.95/0.93 0.99/0.96 1.00/0.96
GLS/GLS∗2 1.00/0.67 1.00/0.61 1.00/0.56 0.95/0.94 0.98/0.96 1.00/0.96
GLS∗1 /GLS∗2 1.00/0.81 0.95/0.77 0.93/0.67 1.00/0.97 0.99/0.96 0.95/0.93

SLT /SLT ∗
1 0.96/0.91 1.00/0.92 0.97/0.91 1.00/0.94 0.98/0.94 1.00/0.95

SLT /SLT ∗
2 0.96/0.88 1.00/0.92 0.97/0.90 1.00/0.93 0.99/0.94 1.00/0.90

SLT ∗
1 /SLT ∗

2 0.89/0.85 0.98/0.98 0.97/0.96 0.96/0.93 0.98/0.96 1.00/0.92

JOH/JOH∗
1 0.95/0.93 0.97/0.94 1.00/0.96 0.96/0.93 0.98/0.96 1.00/0.93

JOH/JOH∗
2 0.94/0.87 0.90/0.84 1.00/0.94 0.98/0.92 0.99/0.94 1.00/0.95

JOH∗
1 /JOH∗

2 0.89/0.84 0.87/0.83 0.97/0.95 1.00/0.94 0.99/0.95 0.98/0.96

Note: The first entry measures the relative portion of joint rejections with respect to the test with the

lower rejection rate (r̂). The second entry describes the correlation between the rejections (ρ̂).

The second measure we consider is the correlation of the rejections of two tests given by

ρ̂ =
τ̂√

p̂1(1− p̂1) ·
√

p̂2(1− p̂2)
.

The ratio ρ̂ can also be regarded as an estimator of the limit correlation of the rejection fre-

quencies p̂1 and p̂2 (compare (5.3)). The correlation measure ρ̂ automatically takes account of

differing rejection frequencies. To be precise, ρ̂ < 1 if p̂1 6= p̂2. Note that ρ̂ might get very

small if p̂1 and p̂2 are both close to 1 and τ̂ is just slightly smaller than min(p̂1, p̂2).

In Tables 4 and 5 we report figures for r̂ and ρ̂ for some representative cases. We obtain

the following main results. The correlations of the rejections of GLS∗1 , SLT ∗
1 , SLT ∗

2 , JOH∗
1 ,

and JOH∗
2 with the rejections of the corresponding asymptotic tests are generally quite high,

i.e. above 0.8. In case of the KPSW-DGP (5.2) values below 0.60 can occur for the correlation

measure ρ̂ owing to the differing rejection frequencies of asymptotic and bootstrap tests. The

rejections of GLS∗2 are strongly correlated with the rejections of GLS for the Toda-DGPs.

However, the correlations dramatically fall when using the KPSW-DGP.

The correlations between the rejections of the bootstrap tests based on Algorithms 1 and

2 are usually quite large as long as the rejection frequencies are close to each other. If they

deviate, it is ρ̂ that falls more than r̂. Hence, higher rejections of one test are due to additional
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Table 5. Relationship Between Test Rejections for KPSW-DGP with True Cointegrating Rank
r = 2, Rank under H0 is r0 = 1, VAR Order p = 2, Nominal Significance Level 0.05

r̂/ρ̂ T = 50 T = 100 T = 200

GLS/GLS∗1 0.96/0.77 1.00/0.79 0.99/0.76
GLS/GLS∗2 0.00/ — 0.00/ — 0.60/0.20
GLS∗1 /GLS∗2 0.00/ — 0.00/ — 0.70/0.18

SLT /SLT ∗
1 1.00/0.66 0.99/0.86 1.00/0.96

SLT /SLT ∗
2 1.00/0.46 1.00/0.67 1.00/0.91

SLT ∗
1 /SLT ∗

2 0.92/0.65 1.00/0.77 1.00/0.94

JOH/JOH∗
1 1.00/0.59 0.99/0.87 0.99/0.92

JOH/JOH∗
2 1.00/0.42 1.00/0.66 1.00/0.86

JOH∗
1 /JOH∗

2 1.00/0.71 1.00/0.74 0.99/0.91

Note: The first entry measures the relative portion of joint rejections with respect to the test with the

lower rejection rate (r̂). The second entry describes the correlation between the rejections (ρ̂).

rejections. However, the correlations of GLS∗1 and GLS∗2 are very low for the KPSW-DGP in

any case. To sum up, corresponding asymptotic and bootstrap tests do not differ systematically

in their test decisions. However, the applied researcher has to be aware that there are situations

where disagreements may occur.

Finally, we relate our findings to the results of the simulation studies performed by Swensen

(2005a, 2005b) in terms of the Johansen test. Swensen (2005a) considers a five-dimensional

VAR(1) process with one cointegrating relation as DGP, which is similar to a five-dimensional

version of the Toda process (5.1). This process has also been employed by Johansen (2002). In

addition, Swensen (2005b) also employs the Toda process and another DGP that has been used

in the literature before. There are a couple of issues worth mentioning.

First, the results of Swensen (2005a, 2005b) on the tests’s sizes are slightly more encour-

aging for the bootstrap tests and, second, he found the differences between the Algorithms 1

and 2 to be rather small. These findings may be DGP-specific. Nevertheless, our results are in

line with these findings if we focus our attention on the simple Toda-DGP and the JOH- and

SLT -tests. In fact, most of the deteriorations with respect to the bootstrap tests and most of

the pronounced differences between the algorithms are confined to the more complex KPSW-

DGP (5.2). Probably, it is rather difficult to replicate the autoregressive structure of this DGP

by appropriate parameter estimates. As a consequence of this, we may obtain autocorrelated
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residuals. It is known from other studies that this negatively affects the bootstrap tests (compare

e.g. Härdle et al. 2003, MacKinnon 2002).

However, our results regarding the loss in small sample power and the rather high corre-

lations between the asymptotic and bootstrap test decisions are confirmed by the findings of

Swensen (2005a, 2005b). Performing a sequential test application, Swensen (2005a, 2005b)

figured out that the asymptotic tests may found more often the true cointegrating rank than the

bootstrap tests, although the latter have superior size properties. In other words, the bootstrap

test’s sequence terminates too early due to a lower small sample power.

6 Summary

In this paper we have analysed two recursive bootstrap procedures for systems cointegration

tests with a prior adjustment for deterministic terms suggested by Saikkonen & Lütkepohl

(2000b) and Saikkonen et al. (2006). Their small sample properties are studied and compared to

the properties of the corresponding asymptotic tests within a simulation study. This simulation

study also includes the Johansen cointegration test.

Our overall conclusions are that bootstrap methods can help to improve the size properties

of systems cointegration tests in small samples if simple processes are considered. However,

in case of more complex DGPs the situation is less favourable. With respect to the tests’ small

sample power no increase should be expected. In fact, we often observe significant reductions in

the small sample power if the bootstrap test versions are applied. Our mixed findings correspond

quite well to the outcomes of different simulation studies on the Johansen cointegration test.

While Swensen (2005a, 2005b) also detects size improvements for the bootstrap test versions

in case of DGPs with a simple autoregressive structure, van Giersbergen (1996) and Harris &

Judge (1998) report deteriorations in terms of small sample size and power for more complex

DGPs. Moreover, some of our findings seem to support a remark of Johansen (2002, p. 1930).

He does not necessarily expect an improved approximation of the tests’ distributions by the use

of bootstrap methods. The reason is the nonuniformity in the convergence with respect to the

nuisance parameters in the null distributions of the test statistics. By contrast, Johansen (2002)

proposes a small sample correction following Bartlett (1937). However, Swensen (2005a) has

shown that bootstrap approximations work better than the correction suggested by Johansen

(2002) in a number of situations.

When using bootstrap tests, we have a clear preference for bootstrap Algorithm 1, in which

all parameters are estimated imposing the cointegrating rank under the null hypothesis. In case

27



of the more complex data-dependent DGP, the tests based on Algorithm 1 clearly outperform the

corresponding versions related to Algorithm 2 with respect to the small sample properties. The

latter algorithm uses residuals and estimators for the short-run parameters from an unrestricted

VAR. Furthermore, we have found that the rejections of corresponding bootstrap and asymptotic

tests are usually strongly correlated.

It should be rather straightforward to adjust our asymptotic results such that different as-

sumptions about the presence of deterministic terms can be made. Hence, one may apply valid

bootstrap versions of cointegration tests considered by Saikkonen & Lütkepohl (2000a), which

allow for level shifts at known time, or of a test procedure excluding a linear trend as e.g. sug-

gested by Saikkonen et al. (2006). Finally, an extension of the bootstrap algorithms in order to

consistently determine the cointegration rank may be conducted in future research. The asymp-

totic results of Swensen (2005a) regarding the Johansen test indicate that such a consistent

sequential procedure can also be found for tests with a prior adjustment for deterministic terms.

However, a sequential bootstrap procedure would probably not work better than the asymptotic

version due to the inferior small sample power of the bootstrap tests.

van Giersbergen (1996) pointed out the difficulties of both bootstrap and asymptotic tests

to deal with autocorrelated error terms in case of an inappropriate VAR order choice. Given

that, a more promising line of research may be to design and evaluate an overall bootstrap

procedure for choosing the lag order and the cointegrating rank. The hope is to improve the

model specification resulting in a more reliable inference on the cointegrating rank.

Appendix A: Proofs

Proof of Lemma 1

According to Lemma 1 and Remark 9 of Swensen (2005a) there exists a Granger representation

for y∗t , which is given by

y∗t = C̃

t∑
i=p+1

ε∗i + τ̃(t− p) +
√

TR∗
t,T , t = p + 1, . . . , T, (A.1)

where C̃ = β̃⊥(α̃′⊥Γ̃β̃⊥)−1α̃′⊥, τ̃ = C̃(ν̃ + α̃φ̃)− (C̃Γ̃− I) ¯̃βφ̃, and
√

TR∗
t,T is defined in (A.4).

Note that x∗t and y∗t are generated using the same bootstrap residuals and parameter estima-

tors. Therefore it is sufficient to show that the deterministic part µ∗0 + µ∗1t can be extracted from
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(A.1) in order to prove (4.4) of Lemma 1. Hence, we have to show

x∗t + µ∗0 + µ∗1t = C̃

t∑
i=p+1

ε∗i +
√

TR0∗
t,T + µ∗0 + µ∗1t, t = p + 1, . . . , T, (A.2)

where y∗t = x∗t + µ∗0 + µ∗1t and
√

TRc∗
t,T as defined in (A.9). Then, we can subtract µ∗0 + µ∗1t

from both sides of (A.2) and obtain the Granger representation for x∗t as proposed in Lemma 1.

In the following, we first repeat some steps of the proof in Swensen (2005a) in order to

introduce a number of expressions in line with the notation used in this paper. Let Ỹ ∗
t =

(y∗t β̃, ∆y∗′t β̃⊥)′. Then, according to Johansen (1995) and Swensen (2005a), the recursion de-

fined in Algorithm 1 can be stated as

˜̃A(L)Ỹ ∗
t = (¯̃α, ¯̃α⊥)′(ε∗t + ν̃ + α̃φ̃− α̃φ̃t)

for some suitable lag polynomial ˜̃A(L). Further, following the arguments in Swensen (2005a),

we can define ˜̃C(z) = ˜̃A(z)−1 and obtain

Ỹ ∗
t =


 β̃′y∗t

β̃′⊥∆y∗t


 = ˜̃A(L)−1( ¯̃α, ¯̃α⊥)′(ε∗t + ν̃ + α̃φ̃− α̃φ̃t)

= ˜̃C(L)( ¯̃α, ¯̃α⊥)′(ε∗t + ν̃ + α̃φ̃− α̃φ̃t)

= ˜̃C(1)( ¯̃α, ¯̃α⊥)′(ε∗t + ν̃ + α̃φ̃− α̃φ̃t) + ˜̃C#(L)( ¯̃α, ¯̃α⊥)′∆(ε∗t + ν̃ + α̃φ̃− α̃φ̃t).

(A.3)

The derivation of the Granger representation for y∗t is based on the decomposition

y∗t = ¯̃β⊥β̃′⊥

t∑
i=p+1

∆y∗i + ¯̃ββ̃′y∗t + ¯̃β⊥β̃′⊥y∗p.

Using this equation in connection with (A.3), Swensen (2005a) derives the expressions for τ̃

and the remainder term. In our notation we have for the latter one
√

TR∗
t,T = (0, ¯̃β⊥) ˜̃C#(L)( ¯̃α, ¯̃α⊥)′(ε∗t − εp) + ( ¯̃β, 0) ˜̃C(1)( ¯̃α, ¯̃α⊥)′ε∗t

+ ( ¯̃β, 0) ˜̃C#(L)( ¯̃α, ¯̃α⊥)′∆ε∗t

+ ( ¯̃β, 0) ˜̃C(1)( ¯̃α, ¯̃α⊥)′(ν̃ + α̃φ̃)− ( ¯̃β, 0) ˜̃C#(1)( ¯̃α, ¯̃α⊥)′α̃φ̃

+ p ¯̃βφ̃ + ¯̃β⊥β̃′⊥yp.

(A.4)

Thus, in order to derive (4.5) from (A.1) we have to analyse the last four terms of (A.4) and

τ̃(t − p), which all involve deterministic components. Since we assume that µ∗0 and µ∗1 satisfy

the conditions (4.2) the estimators ν̃ and φ̃ are replaced accordingly.
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Let us start with the term τ̃(t − p). Given the definition of τ̃ and the conditions (4.2) we

obtain

τ̃ = C̃(α̃θ∗ + Γ̃µ∗1 + α̃β̃′µ∗1)− (C̃Γ̃− I) ¯̃ββ̃′µ∗1

= C̃Γ̃µ∗1 − (C̃Γ̃− I) ¯̃ββ̃′µ1

= C̃Γ̃(I − ¯̃ββ̃′)µ∗1 + ¯̃ββ̃′µ∗1

= C̃Γ̃ ¯̃β⊥β̃′⊥µ∗1 + ¯̃ββ̃′µ∗1

= [β̃⊥(β̃′⊥β̃⊥)−1β̃′⊥ + β̃(β̃′β̃)−1β̃′]µ∗1

= µ∗1.

(A.5)

Furthermore,

p ¯̃βφ̃ + ¯̃β⊥β̃′⊥yp = p ¯̃ββ̃′µ∗1 + ¯̃β⊥β̃′⊥(x∗p + µ∗0 + pµ∗1)

= ¯̃β⊥β̃′⊥x∗p + ¯̃β⊥β̃′⊥µ∗0 + p( ¯̃ββ̃′ + ¯̃β⊥β̃′⊥)µ∗1

= ¯̃β⊥β̃′⊥x∗p + ¯̃β⊥β̃′⊥µ∗0 + pµ∗1.

(A.6)

Then,

( ¯̃β, 0) ˜̃C(1)( ¯̃α, ¯̃α⊥)′(ν̃ + α̃φ̃) = ( ¯̃β, 0) ˜̃C(1)( ¯̃α, ¯̃α⊥)′(−α̃θ∗ + Γ̃µ∗1 + α̃β̃′µ∗1)

= ¯̃β ¯̃α′(Γ̃C̃ − I)(−α̃β̃′µ∗0 + Γ̃µ∗1 + α̃β̃′µ∗1)

= ¯̃β ¯̃α′(Γ̃C̃ − I)Γ̃µ∗1 + ¯̃ββ̃′µ∗0 − ¯̃ββ̃′µ∗1

= ¯̃β ¯̃α′Γ̃(C̃Γ̃− I)µ∗1 + ¯̃ββ̃′µ∗0 − ¯̃ββ̃′µ∗1,

(A.7)

where the second equality follows from the proof of Lemma 1 in Swensen (2005a). Finally, we

have

−( ¯̃β, 0) ˜̃C#(1)( ¯̃α, ¯̃α⊥)′α̃φ̃ = −( ¯̃β, 0) ˜̃C#(1)(β̃′µ∗1, 0)′

= − ¯̃β
[
−I − ¯̃α′Γ̃ ¯̃β + ¯̃α′Γ̃ ¯̃β⊥( ¯̃α′⊥Γ̃ ¯̃β⊥)−1 ¯̃α′⊥Γ̃ ¯̃β

]
β̃′µ∗1

= ¯̃ββ̃′µ∗1 + ¯̃β ¯̃α′Γ̃ ¯̃ββ̃′µ∗1 − ¯̃β ¯̃α′Γ̃C̃Γ̃ ¯̃ββ̃′µ∗1

= ¯̃ββ̃′µ∗1 − ¯̃β ¯̃α′Γ̃(C̃Γ̃− I) ¯̃ββ̃′µ∗1,

(A.8)

where the second equality follows from the results in Rahbek & Mosconi (1999, p. 89). Note

in this respect that the expression −Ḋ(1) in Rahbek & Mosconi (1999) corresponds to ˜̃C#(1).
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Collecting the results of (A.5) - (A.8) yields

µ∗1(t− p) + [pµ∗1 + ¯̃β⊥β̃′⊥µ∗0] + [ ¯̃β ¯̃αΓ̃(C̃Γ̃− I)µ∗1 + ¯̃ββ̃′µ∗0 − ¯̃ββ̃′µ∗1]

+ [ ¯̃ββ̃′µ∗1 − ¯̃β ¯̃α′Γ̃(C̃Γ̃− I) ¯̃ββ̃′µ∗1]

= ( ¯̃β⊥β̃′⊥ + ¯̃ββ̃′)µ∗0 + µ∗1t + [ ¯̃β ¯̃αΓ̃(C̃Γ̃− I)](I − ¯̃ββ̃′)µ∗1

= µ∗0 + µ∗1t + ¯̃β ¯̃αΓ̃(C̃Γ̃− I) ¯̃β⊥β̃′⊥µ∗1

= µ∗0 + µ∗1t + ¯̃β ¯̃αΓ̃( ¯̃β⊥β̃′⊥ − ¯̃β⊥β̃′⊥)µ∗1

= µ∗0 + µ∗1t

for the deterministic components on the r.h.s. of (A.1). Note that the third equality is obtained

by plugging in the definition of C̃. Hence, as mentioned above, we can subtract µ∗0 + µ∗1t from

both sides of (4.5) and obtain the Granger representation for x∗t as given in Lemma 1 with

√
TR0∗

t,T = (0, ¯̃β⊥) ˜̃C#(L)( ¯̃α, ¯̃α⊥)′(ε∗t − εp) + ( ¯̃β, 0) ˜̃C(1)( ¯̃α, ¯̃α⊥)′ε∗t

+ ( ¯̃β, 0) ˜̃C#(L)( ¯̃α, ¯̃α⊥)′∆ε∗t + ¯̃β⊥β̃′⊥x∗p.
(A.9)

As mentioned in Section 4, β̃′⊥(x∗p−) does not converge to zero. However, it is bounded in

Pr0,T probability and bounded with respect to the measure P ∗
r0,T . To see this, we write β̃′⊥x∗p =

β̃′⊥[xp − (µ∗0 − µ0) − (µ∗1 − µ1)p] in line with (4.11). It is obvious, that this expression is

bounded conditional on the observations since all terms are nonrandom in this case. Regarding

the measure Pr0,T we have β̃′⊥(µ∗1 − µ1) = Op(T
−1/2) if µ∗1 = µ̂1 and, from Saikkonen &

Lütkepohl (2000b, Proof of Theorem 1), β̃′⊥(µ∗0−µ0) = Op(1) if µ∗0 = µ̂0 from (4.3) is applied.

Thus, ¯̃β⊥β̃′⊥x∗p = ¯̃β⊥β̃′⊥xp + Op(1) is bounded in Pr0,T probability due to the consistency of

β̃⊥. Thus, the result P ∗
r0,T (maxp+1≤t≤T |R0∗

t,T | > η) → 0 for all η > 0 in Pr0,T probability

as T → ∞ follows from the proof of Lemma 1 in Swensen (2005a) because for all η > 0,

P ∗
r0,T (| ¯̃β⊥β̃′⊥x∗p|/

√
T > η) → 0 in Pr0,T probability as T → ∞. In fact, for proving the

corresponding result for R∗
t,T , Swensen (2005a) only considers our remainder term

√
TRc∗

t,T

with y∗p instead of x∗p since the estimators of the deterministic parameters of the VECM (2.3)

are bounded in probability due to their consistency.

E∗[ε∗t ε
∗′
t ] = Ω̃T → Ω in Pr0,T probability as T → ∞ follows directly from Lemma 1 and

Remark 9 of Swensen (2005a) since we use the same bootstrap residuals for generating x∗t as

for y∗t .

The representation (4.5) given for yc∗
t in Lemma 1 follows from the foregoing derivations.

First, add µ∗0 on both sides of (4.4). Second, decompose µ∗0 into µ∗0 = ( ¯̃ββ̃′ + ¯̃β⊥β̃′⊥)µ∗0 =

τ ∗0 + ¯̃β⊥β̃′⊥µ∗0. Then, we have ¯̃β⊥β̃′⊥x∗p + ¯̃β⊥β̃′⊥µ∗0 = ¯̃β⊥β̃′⊥yc∗
p . Hence, (4.5), i.e. yc∗

t = x∗t +µ∗0 =
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C̃
∑t

i=p+1 ε∗t + τ ∗0 +
√

TRc∗
t,T , is obtained with

√
TRc∗

t,T = (0, ¯̃β⊥) ˜̃C#(L)( ¯̃α, ¯̃α⊥)′(ε∗t − εp) + ( ¯̃β, 0) ˜̃C(1)( ¯̃α, ¯̃α⊥)′ε∗t

+ ( ¯̃β, 0) ˜̃C#(L)( ¯̃α, ¯̃α⊥)′∆ε∗t + ¯̃β⊥β̃′⊥yc∗
p .

(A.10)

Note that ¯̃β⊥β̃′⊥yc∗
p = ¯̃β⊥β̃′⊥(yc

p − (µ∗1 − µ1)p) = ¯̃β⊥β̃′⊥yc
p + Op(T

−1/2) such that ¯̃β⊥β̃′⊥yc∗
p is

bounded in Pr0,T probability. The result P ∗
r0,T (maxp+1≤t≤T |Rc∗

t,T | > η) → 0 for all η > 0 in

Pr0,T probability as T →∞ follows from the argumentation with respect to the remainder term

R0∗
t,T above. This completes the proof of Lemma 1.

Proof of Proposition 1

We now present the results needed to prove Proposition 1. They are collected in different

Lemmas. The idea is to mimic the proof of Theorem 4.1 for SLT (r0) given in Saikkonen

et al. (2006).5 To this end, we first show a number of results conditional on the observations,

i.e. with respect to the measure P ∗
r0,T . Then, we obtain convergence and distribution results

regarding the measure Pr0,T . In order to accomplish that we have to make us of Lemma 1 and

of Lemmas 1-3 in Swensen (2005a) several times. Note again that Lemmas 1-3 are actually

proven in conjunction with Algorithm 2 but are also valid in case of Algorithm 1 (see Remark

9 of Swensen 2005a).

In the following we will use the bootstrap stochastic order symbols which have been intro-

duced by Park (2003) and Chang & Park (2003). Similar to Chang & Park (2003), they are

defined here as follows. Let (X∗
n) be a sequence of bootstrap statistics. Then, X∗

n = O∗
p(T

λ) if

for every ε > 0 there exists a finite K and N(K, ε) ∈ N, such that P ∗
r0,T{|T−λX∗

n| > K} < ε for

all T ≥ N(K, ε). Furthermore, Xn = o∗p(T
λ) if for every ε P ∗

r0,T{|T−λX∗
n| > ε} converges to

zero in Pr0,T probability as T →∞. These definitions can be adopted for sequences of random

vectors. Furthermore, d∗→ signifies convergence in P ∗
r0,T distributions (compare Swensen 2005a)

and,
p∗→ and

p→ refer to convergence in P ∗
r0,T and Pr0,T probability, respectively.

The framework, on which the derivation of the asymptotic distribution is based, is described

in Section 4. As mentioned there, the bootstrap estimator of µ∗1 has to satisfy certain conver-

gence and distributional properties. In deriving them we need convergence results for the RR

estimators of the parameters of the VECM (3.1), which is based on the pseudo data y∗t . They

will be stated conditional on the observations y1, . . . , yT in Lemma A1. The asterisk indicates
5Note again that we do not consider a level shift at unknown time in our framework. Therefore, the model setup

and the corresponding proofs in Saikkonen et al. (2006) simplify accordingly. Nevertheless, the asymptotic test
distribution is not affected by excluding the level shift.
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the estimators that are based on the bootstrap data. For the derivations, we have to assume that

β̃∗ has been made unique by the normalization β̃∗[(β̃′β̃)−1β̃′β̃∗]−1 = β̃∗( ¯̃β′β̃∗)−1. A corre-

sponding normalization follows for α̃∗. Note that all other relevant quantities are invariant to

these normalizations (compare Saikkonen & Lütkepohl 2000b). Therefore, we do not explicitly

indicate the normalized version of the estimators in the following.

Lemma A1. Under Assumption 1, we have

α̃∗ − α̃ = O∗
p(T

−1/2) (A.11)

β̃∗ − β̃ = O∗
p(T

−1) (A.12)

φ̃∗ − φ̃ = O∗
p(T

−3/2) (A.13)

ν̃∗ − ν̃ = O∗
p(T

−1/2) (A.14)

Γ̃∗i − Γ̃i = O∗
p(T

−1/2) (i = 1, . . . , p− 1) (A.15)

Ω̃∗ − Ω̃ = O∗
p(T

−1/2). (A.16)

¤

Proof To proof Lemma A1 we follow Johansen (1995, Ch. 13). Note, however, that he consid-

ers a linear trend orthogonal to the space spanned by the cointegration vectors. Thus, we have

to adjust the treatment of the deterministic terms. This basically results in the use of different

norming matrices. Furthermore, keep in mind that estimators based on the observations are not

random if we condition on the observations.

Define Z∗
0t = ∆y∗t , Z∗

1t = (y∗′t−1, t− 1)′, and Z∗
2t = (∆y∗′t−1, . . . , ∆y∗′t−p+1, 1)′. Then, regress

Z∗
0t and Z∗

1t on Z∗
2t to obtain the residuals R∗

0t and R∗
1t, respectively. Using these residuals we

define

S∗ij = (T − p)−1

T∑
t=p+1

R∗
itR

∗′
jt i, j = 0, 1.

In the same way we can obtain the moment matrices Sij (i, j = 0, 1) from Z0t, Z1t, Z2t, R0t,

and R1t, which are defined in terms of the original observations.

We first show the consistency of the estimators α̃∗, β̃∗, φ̃∗, and Ω̃∗. Define β̃∗# = (β̃∗′,−φ̃∗)′.

The estimator β̃∗# is based on the eigenvectors corresponding to the r largest eigenvalues of

|λS∗11 − S∗10S
∗−1
00 S∗01| = 0, (A.17)

(see Swensen 2005a). Given β̃∗#, we can obtain the estimators α̃∗ = S∗01β̃
∗#(β̃∗#′S∗11β̃

∗#)−1

and Ω̃∗ = S∗−1
00 −S∗01β̃

∗#(β̃∗#′S∗11β̃
∗#)−1β̃∗#′S∗10 corresponding to Johansen (1995). Similar to
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Johansen (1995, Ch. 13) we transform equation (A.17) to

|λÃ′
T S∗11ÃT − Ã′

T S∗10S
∗−1
00 S∗01ÃT | = 0, (A.18)

where

ÃT =


 β̃ T−1/2 ¯̃β⊥ 0

−φ T−1/2τ̃ ′ ¯̃β⊥ T−1


 =

[
β̃∗# T−1/2C̃T

]

with

C̃T =




¯̃β⊥ 0

τ̃ ′ ¯̃β⊥ T−1/2




as in Swensen (2005a). The eigenvalues of (A.17) and (A.18) are identical and the eigenvectors

of (A.18) can be obtained from those of (A.17) by premultiplying with

Ã−1
T =




¯̃β′ 0

T 1/2β̃′⊥ 0

T τ̃ ′ T


 .

Next, we study the weak limit of (A.18) conditional on the observations. Given the definition

of ÃT we can write (A.18) as
∣∣∣∣∣∣
λ


 β̃#′S∗11β̃

# T−1/2β̃#′S∗11C̃T

T−1/2C̃ ′
T S∗11β̃

# C̃ ′
T S∗11C̃T


−


β̃#′S∗10S

∗−1
00 S∗01β̃

# T−1/2β̃#′S∗10S
∗−1
00 S∗01C̃T

C̃ ′
T S∗10S

∗−1
00 S∗01β̃

# T−1S∗10S
∗−1
00 S∗01C̃T




∣∣∣∣∣∣
=0.

Hence, we need a number of conditional convergence results to determine the weak limit of

(A.18). They are summarized in the next lemma, which is the counterpart of Lemma 10.3 in

Johansen (1995).

Lemma A2. Under Assumption 1, we have

S∗00

p∗→ S00 (A.19)

S∗01β̃
# p∗→ S01β̃

# (A.20)

β̃#′S∗11β̃
# p∗→ β̃#′S11β̃

# (A.21)

(T − p)−1C̃ ′
T S∗11C̃T

d∗→
∫ 1

0

G∗(s)G∗(s)′ds (A.22)

C̃ ′
T (S∗10 − S∗11β̃

#α̃)
d∗→

∫ 1

0

G∗(s)(dW ∗(s))′ (A.23)

C̃ ′
T S∗11β̃

# = O∗
p(1), (A.24)

where G(s)∗ = [(W ∗(s) − W̄ ∗(s))′C̃ ¯̃β⊥, s − 1/2]′, W̄ ∗(s) =
∫ 1

0
W ∗(s)ds, and W ∗(s) is a

n-dimensional Brownian motion with covariance matrix Ω̃. ¤
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Proof (A.19) - (A.21) follow from the proof of Lemma 2 in Swensen (2005a). Consider for

example (A.19). Note that S∗00 = M∗
00 −M∗

02M
∗−1
22 M∗

20 where M∗
ij = (T − p)−1

∑T
t=p+1 Z∗

itZ
∗′
jt

(i, j = 0, 2). Similarly, we can write S00 by the help of Mij (i, j = 0, 2) defined with respect to

the original observations. Swensen (2005a) shows that the first differences of the observations

and the bootstrap data have invertible moving average representations given by ∆yt−j = ν̃j +
∑∞

i=0 ξ̃′i,j ε̃t−j and ∆y∗t−j = ν̃j +
∑∞

i=0 ξ̃′i,jε
∗
t−j respectively, where ν̃j and ξ̃i,j are a (n×1) vector

and a (n × n) matrix of parameter estimates described in Swensen (2005a). Note that ∆yt−j

is expressed using the true error terms εt in Swensen (2005a). However, we can equally use

the residuals ε̃t by replacing the true parameter vector νj by the estimated vector ν̃j . This is

possible because we condition on the observations.

Given the moving average representations it is straightforward to see that E∗[(∆yt−j −
ν̃j)(∆yt−k − ν̃k)

′] =
∑∞

i=0 ξ̃′i,jΩ̃ξ̃i,j = E∗[(∆y∗t−j − ν̃j)(∆y∗t−k − ν̃k)
′] (j, k = 0, . . . , p − 1),

because E∗[ε∗t ε
∗′
t ] = (T − p)−1

∑T
i=p+1 ε̃tε̃

′
t = Ω̃. Based on this result we obtain E∗(M∗

ij) =

E∗(Mij). Furthermore, we conclude from the argumentation of Swensen (2005a) related to

equation (22) in the proof of Lemma 2 that the conditional variance of M∗
ij (i, j = 0, 2) con-

verges to zero in P ∗
r0,T probability. Thus, (A.19) will follow. (A.20) and (A.21) can be obtained

in a similar way by noting that β̃#′[y′t−1, (t−1)]′ is a stationary series with respect to the measure

P ∗
r0,T .

Note that S∗T (s)
d∗→ W ∗(s) (see Swensen 2005a), where S∗T (s) = (T − p)−1

∑[sT ]
i=k+1 ε∗i , 0 ≤

s ≤ 1. Here, we consider the Brownian motion W ∗ with the estimated covariance matrix Ω̃.

We may also consider a Brownian motion W with covariance matrix Ω, since Ω̃ converges to

Ω for T → ∞. Nevertheless, we use W ∗ to stress that we refer to convergence conditional on

the observations. Now, we replace the unconditional distribution result S∗T (s)
d→ W (s) used

in Lemma 3 of Swensen (2005a) by the conditional result mentioned before. Then, (A.22) and

(A.23) follow from Lemma 3 and its proof in Swensen (2005a).

Finally, we turn to (A.24). Define Z̄∗
1 = (T−p)−1

∑T
t=p+1 Z∗

1t, Z
l∗
2t = (∆y∗′t−1, . . . , ∆y∗′t−p+1)

′,

Z̄∗
2 = (T − p)−1

∑T
t=p+1 Z l∗

2t , S∗yy = (T − p)−1
∑T

t=p+1(Z
∗
1t − Z̄∗

1)(Z∗
1t − Z̄∗

1)′, S∗yz = (T −
p)−1

∑T
t=p+1(Z

∗
1t−Z̄∗

1)(Z l∗
2t−Z̄∗

2)′, and S∗zz = (T−p)−1
∑T

t=p+1(Z
l∗
2t−Z̄∗

2)(Z l∗
2t−Z̄∗

2)′. Then, we

have S∗11 = S∗yy − S∗yzS
∗−1
zz S∗zy with S∗zy = S∗′yz corresponding to Johansen (1995, pp. 146-147).

Hence,

C̃ ′
T S∗11β̃

# = C̃ ′
T S∗yyβ̃

# − C̃ ′
T S∗yzS

∗−1
zz S∗zyβ̃

#. (A.25)

From Lemma 1 of Swensen (2005a) we conclude that β̃#′(Z∗
1t − Z̄∗

1) and (Z l∗
2t − Z̄∗

2) are zero-

mean I(0) series and that C̃ ′
T (Z∗

1t − Z̄∗
1) is a zero-mean I(1) series with respect to the measure
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P ∗
r0,T . Now, we can apply Theorem B.13 of Johansen (1995) to determine the conditional con-

vergence orders of the product moment matrices involved in (A.25). We obtain that C̃ ′
T S∗yyβ̃

#,

C̃ ′
T S∗yz, S∗−1

zz , and S∗zyβ̃
# are all O∗

p(1). Thus, C̃ ′
T S∗11β̃

# is also O∗
p(1) confirming (A.24). This

completes the proof of Lemma A2. ¤

Using Lemma A.2, the weak limit of (A.18) can be derived. Following Johansen (1995) we

see that the ordered eigenvalues of (A.18) converge, conditional on the observations, to those of
∣∣∣∣∣∣
λ


β̃#′S11β̃

# 0

0
∫ 1

0
G∗(u)G∗(u)′du


−


β̃#′S10S

−1
00 S01β̃

# 0

0 0




∣∣∣∣∣∣
= 0

|λβ̃#′S11β̃
# − β̃#′S10S

−1
00 S01β̃

#||λ
∫ 1

0

G∗(u)G∗(u)′du| = 0,

and the space spanned by the r first eigenvectors of (A.18), given by sp(Ã−1
T β̃∗#), converges to

the space spanned by vectors with zeros in the last (n− r + 1) coordinates. Thus, we have

Ã−1
T β̃∗# =




Ir

T 1/2β̃′⊥β̃∗

T (τ̃ ′β̃∗ − φ̃∗)


 =


 Ir

T 1/2UT


 =




Ir

o∗p(1)

o∗p(1)


 ,

with UT = (β̃∗′β̃⊥, T 1/2(β̃∗′τ̃ − φ̃∗′))′. Hence, β̃∗ is a consistent estimator of β̃ conditional on

the observations. Using this result, it is straightforward to show that τ̃ ′β̃∗
p∗→ τ̃ ′β̃ = φ̃. Thus, φ̃∗

is consistent as well and we have (φ̃∗ − φ̃) = O∗
p(T

−1) and (β̃∗ − β̃) = O∗
p(T

−1/2).

Further, note that β̃∗#′S∗11β̃
∗# = (β̃# + C̃T UT )′S∗11(β̃

# + C̃T UT ) and β̃∗#′S∗10 = (β̃# +

C̃T UT )′S∗10 corresponding to Johansen (1995, p. 181). Using (A.19) - (A.21) and the fact that

UT = o∗p(T
−1/2) we obtain β̃∗#′S∗11β̃

∗# p∗→ β̃#′S11β̃
# and β̃∗#′S∗10

p∗→ β̃#′S10. Given the

definition of α̃∗ and Ω̃∗, the latter two results in conjunction with (A.19) imply that α̃∗ and Ω̃∗

converge towards α̃ and Ω̃ in P ∗
r0,T probability respectively.

Having established the consistency of β̃∗, φ̃∗, α̃∗ and Ω̃∗, we now proceed to prove (A.11)-

(A.13) following the proof of Johansen (1995, Lemma 13.2). In our case the first order condi-

tions for β̃∗# and α̃∗ read as

α̃∗′Ω̃∗−1(S∗01 − α̃∗β̃∗#′S∗11) = 0 (A.26)

(S∗01 − α̃∗β̃∗#′S∗11)β̃
∗# = 0. (A.27)

Further, define

S∗ε1 = (T − p)−1

T∑
t=p+1

ε̃∗t R̃
′
1t = S∗01 − α̃β̃#′S∗11, (A.28)
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where ε̃∗t = R̃0t − α̃β̃#′R̃1t (compare Johansen 1995, p. 91).

Insert (A.28) and C̃T UT = β̃∗# − β̃# into (A.26) and multiply by C̃T from the right. Then,

using Lemma A.2 and the consistency of α̃∗ and Ω̃∗ we find that TUT = O∗
p(1) in line with

Johansen (1995, p. 182-183). Recalling the definition of UT , we conclude that (β̃∗ − β̃) =

O∗
p(T

−1) and (φ̃∗− φ̃) = O∗
p(T

−3/2). Now, insert (A.28) into (A.27) and multiply by (T −p)1/2.

Then, using (A.12) and (A.21) gives α̃∗ − α̃ = O∗
p(T

−1/2) corresponding to Johansen (1995,

p. 183), which shows (A.11).

(A.14) and (A.15) can be obtained from an analog of Theorem 13.5 in Johansen (1995). We

do not show this in detail but consider instead the convergence result for Ω̃∗ in (A.16), which

is not treated by Johansen (1995). The proof of (A.16) closely follows the idea of the proof

of Theorem 13.5 in Johansen (1995). Thus, (A.14) and (A.15) are derived accordingly. Write

(3.1) as

∆y∗t = ϑ̃Zt(β̃
#) + ε∗t , (A.29)

where Zt(β̃
#) = (1, y∗#′t−1β̃

#, ∆y∗′t−1, . . . , ∆y∗′t−p+1)
′ and ϑ̃ = (ν̃, α̃, Γ̃1, . . . , Γ̃p−1). Note that

Zt(β̃
#) is a I(0) series conditional on the observations. Let Ω∗ = (T − p)−1

∑T
t=p+1 ε∗t ε

∗′
t and

Ω̃∗ = (T −p)−1
∑T

t=p+1 ε̃∗t ε̃
∗′
t , where ε̃∗t are the residuals obtained from estimating (A.29) given

β̃#. Tedious but straightforward derivations show that

(T − p)1/2(Ω̃∗ − Ω∗) = (T − p)−1/2

T∑
t=p+1

ε∗t (Zt(β̃
#)− Z̄T (β̃#))′

×
(

(T − p)−1

T∑
t=p+1

(ZT (β̃#)− Z̄T (β̃#))(Zt(β̃
#)− Z̄T (β̃#))′

)−1

× (T − p)−1

T∑
t=p+1

(ZT (β̃#)− Z̄T (β̃#))ε∗′t ,

(A.30)

where Z̄T (β̃#) = (T − p)−1
∑T

t=p+1 Zt(β̃
#). From Theorem B.13 in Johansen (1995) we

conclude that the first and second term on the right hand side of (A.30) are O∗
p(1) and the

third term is o∗p(1). Thus, Ω̃∗ − Ω∗ = o∗p(T
−1/2), which means that Ω̃∗ and Ω∗ have the same

probability limit conditional on the observations. Given (A.12) and (A.13), it is clear that this

result also holds if β̃# is replaced by β̃∗# (compare Johansen 1995, p. 188).

Given that the bootstrap residuals ε∗t are randomly drawn with replacement, they can be

regarded as i.i.d. samples from the empirical distribution given by the estimated residuals ε̃t.

In other words, the bootstrap samples ε∗t become i.i.d. with covariance matrix Ω̃ = (T −
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p)−1
∑T

t=p+1 ε̃tε̃
′
t under the probability measure P ∗

r0,T (compare Park 2002, 2003 for the uni-

variate case). Because we assume that the fourth moments of the error terms exists, a central

limit theorem shows that Ω∗ − Ω̃ = O∗
p(T

−1/2) (compare Hamilton (1994, p. 340-343) for

the standard asymptotic situation). Hence, we finally get Ω̃∗ − Ω̃ = O∗
p(T

−1/2), which proves

(A.16). Hence, we have shown Lemma A.2. ¤

Saikkonen et al. (2006) consider a transformed version of the relevant VECM in order to

introduce certain parameters needed for the derivations later on. In our case we have to use the

decomposition y∗t → µ∗0 +µ∗1t+x∗t with respect to (3.1) assuming that the conditions (4.2) hold.

This yields the transformed VECM

∆x∗t = ν̃0 + α̃(β̃′x∗t−1 − φ̃(0)(t− 1)) +

p−1∑
j=1

Γ̃j∆x∗t−j + ε∗t , t = p + 1, p + 2, . . . , (A.31)

where ν̃(0) = ν̃ − Γ̃µ∗1 + α̃β̃′µ∗0 and φ̃(0) = φ̃− β̃′µ∗1. Note that the true values of ν̃(0) and φ̃(0)

are zero due to the conditions (4.2).

Define the estimators φ̃∗(0) = φ̃∗ − β̃∗′µ∗1 and ν̃∗(0) = ν̃∗ − Γ̃∗µ∗1 + α̃∗β̃∗′µ∗0, which are ob-

tained by transforming the RR estimators of the VECM (3.1) corresponding to Saikkonen et al.

(2006). Their convergence properties are summarized in the next lemma.

Lemma A3. Under Assumptions 1 and 2, we have

φ̃∗(0) = O∗
p(T

−3/2) (A.32)

ν̃∗(0) = O∗
p(T

−1/2). (A.33)

¤

Proof The estimators φ̃∗(0) and ν̃∗(0) can also be obtained from the transformed VECM (A.31).

This is a model with a restricted linear trend and unrestricted mean term as model (3.1). Thus,

we can apply (A.13) of Lemma A.1 for the estimators of the trend parameter φ̃(0) and the mean

term ν̃(0). Since they have true values of zero, (A.32) follows. ¤

We are now in the position to state the properties of the estimator of µ∗1 based on the boot-

strap data.
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Lemma A4. Under Assumptions 1 and 2, we have

β̃′(µ̂∗1 − µ∗1) = O∗
p(T

−3/2) (A.34)

(T − p)−1/2β̃′⊥(µ̂∗1 − µ∗1)
d∗→ N(0, β̃′⊥C̃Ω̃C̃ ′β̃⊥). (A.35)

¤

Proof The proof of Lemma A4 is analogous to the corresponding part of the proof of Lemma

A.14 in Saikkonen et al. (2006). There, the properties of the estimator µ̂1 based on the original

observations are shown. Given the definition of ν̃(0) we have β̃′⊥C̃ν̃(0) = β̃′⊥C̃ν̃ − β̃′⊥C̃Γ̃µ∗1.

From Saikkonen et al. (2006, Section 4) β̃′⊥C̃ν̃ = β̃′⊥µ̂1 + β̃′⊥C̃Γ̃ ¯̃βφ̃ is obtained. Using the

latter equality and the definition of φ̃(0) results in β̃′⊥C̃ν̃(0) = β̃′⊥µ̂1− β̃′⊥C̃Γ̃µ∗1 + β̃′⊥C̃Γ̃ ¯̃ββ̃′µ∗1 +

β̃′⊥C̃Γ̃ ¯̃βφ̃(0) such that β̃′⊥(µ̂1 − µ∗1) = β̃′⊥C̃(ν̃(0) − Γ̃ ¯̃βφ̃(0)). Since the same relation applies to

the estimators based on the pseudo observations one has

β̃∗′⊥(µ̂∗1 − µ∗1) = β̃∗′⊥C̃∗(ν̃∗(0) − Γ̃ ¯̃β∗φ̃∗(0)).

Then, by Lemma A.2,

β̃∗′⊥(µ̂∗1 − µ∗1) = β̃∗′⊥C̃∗ν̃∗(0) + o∗p(T
−1/2)

follows. Corresponding to Saikkonen et al. (2006) the estimator ν̃∗(0) can be viewed as the LS

estimator of ν̃(0) in the auxiliary model

∆x∗t = ν̃(0) + α̃(β̃∗′x∗t−1 − φ̃∗(0)(t− 1)) +

p−1∑
j=1

Γ̃j∆x∗t−j + u∗t , (A.36)

which is obtained from (A.31) by replacing β̃ and φ̃(0) by their bootstrap analogs β̃∗ and φ̃∗(0)

and by noting that u∗t = ε∗t − α̃[(β̃∗ − β̃)′x∗t−1 + φ̃∗(0)(t− 1)], β̃′yc∗
t−1 = β̃′x∗t−1 + θ∗, β̃∗′x∗t−1 =

β̃∗′yc∗
t−1 − θ̃∗, and that ∆yc∗

t−i = ∆x∗t−i (i = 0, . . . , p − 1). Keep in mind, that the estimator θ̃∗

can be recovered from the RR estimators of (3.1).

Equation (A.36) implies that the estimator β̃∗′⊥C̃∗ν̃∗(0) can be obtained by LS from

β̃∗′⊥C̃∗∆x∗t = Λ̃p∗t + ũ∗t , (A.37)

where p∗t = [1, ∆x∗t−1, . . . , ∆x∗t−p+1], Λ̃ is a conformable coefficient matrix and ũ∗t = β̃∗′⊥C̃∗ε∗t−
β̃∗′⊥C̃∗α̃[(β̃∗ − β̃)′x∗t−1 + φ̃∗(0)(t − 1)]. By the definition of C̃ and Lemma A.2, β̃∗′⊥C̃∗α̃ =

O∗
p(T

−1/2). Using this fact, Lemma A.2 and the assumptions, it is straightforward to show that

conditional on the observations the asymptotic properties of the LS estimator of Λ̃ in the aux-

iliary regression model (A.37) can be obtained by assuming that the error term equals β̃
′
⊥C̃ε∗t .
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Following Saikkonen et al. (2006), it is also easy to show that the estimation of the intercept

term in (A.37) is asymptotically independent of the estimation of the other regression coeffi-

cients. Thus, we asymptotically obtain β̃∗′⊥C̃∗ν̃∗(0) = (T − p)−1β̃
′
⊥C̃

∑T
t=p+1 ε∗t since the true

value of ν̃(0) is zero. Therefore, we can conclude that

(T − p)1/2β̃∗′⊥(µ̂∗1 − µ∗1) = β̃′⊥C̃(T − p)−1/2

T∑
t=p+1

ε∗t + o∗p(1).

This, Lemma 1 in Swensen (2005a), and a standard central limit theorem yield

(T − p)1/2β̃∗′⊥(µ̂∗1 − µ∗1)
d∗→ N(0, β̃′⊥C̃Ω̃C̃ ′β̃⊥). (A.38)

In order to obtain (A.35) we need to show that β̃∗⊥ on the l.h.s. of (A.38) can be replaced by β̃⊥.

First note that

(β̃∗⊥−β̃⊥)′(µ̂∗1−µ∗1) = (β̃∗⊥−β̃⊥)′β̃∗(β̃∗′β̃∗)−1β̃∗′(µ̂∗1−µ∗1)+(β̃∗⊥−β̃⊥)′β̃∗⊥(β̃∗′⊥ β̃∗⊥)−1β̃∗′⊥(µ̂∗1−µ∗1)

(A.39)

Due to the consistency of the estimator β̃∗ with respect to β̃ and the result (A.38) the latter term

on the r.h.s. is of order o∗p(T
−1/2). The same is true for the former term because β̃∗′(µ̂∗1− µ∗1) =

φ̃∗(0) = O∗
p(T

−3/2) given the definition of φ̃∗(0), the conditions (4.2), and Lemma A.3. Thus,

(A.35) follows and (A.34) is obtained if β̃∗ in the latter equality can be replaced by β̃. To this

end, write

(β̃∗− β̃)′(µ̂∗1−µ∗1) = (β̃∗− β̃)′β̃∗(β̃∗′β̃∗)−1β̃∗′(µ̂∗1−µ∗1) + (β̃∗− β̃)′β̃∗⊥(β̃∗′⊥ β̃∗⊥)−1β̃∗′⊥(µ̂∗1−µ∗1).

From the arguments made in relation to (A.39) we can deduce that both terms on the r.h.s. are

o∗p(T
−1/2) such that (A.34) is shown. This completes the proof of Lemma A.4. ¤

As described in Section 4, the SLT ∗
1 test is based on the VECM for the adjusted bootstrap

series ŷc∗
t = y∗t − µ̂∗1t given by

∆ŷc∗
t = α̃(β̃′ŷc∗

t−1 − θ∗) +

p−1∑
j=1

Γ̃j∆ŷc∗
t−j + ec∗

t , (A.40)

where ec∗
t = ε∗t − α̃β̃′(ŷc∗

t−1 − yc∗
t−1)(t − 1) + ∆ŷc∗

t − ∆yc∗
t − ∑p−1

j=1 Γ̃j(∆ŷc∗
t−j − ∆yc∗

t−j) =

ε∗t + α̃β̃′(µ̂∗1 − µ∗1)(t − 1) − Γ̃(µ̂∗1 − µ∗1). Define Z̃c∗
0t = ∆ŷc∗

t , Z̃c∗
1t = (ŷc∗′

t−1, 1)′, and Z̃c∗
2t =

(∆ŷc∗′
t−1, . . . , ∆ŷc∗′

t−p+1, 1)′. Then, regress Z̃c∗
0t and Z̃c∗

1t on Zc∗
2t to obtain the residuals R̃c∗

0t and

R̃c∗
1t , respectively. Using these residuals we write

S̃c∗
ij = (T − p)−1

T∑
t=p+1

R̃c∗
it R̃

c∗′
jt i, j = 0, 1.
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In the same way we can obtain the moment matrices Sc∗
ij (i, j = 0, 1) from Zc∗

0t , Zc∗
1t , Zc∗

2t , Rc∗
0t ,

and Rc∗
1t , which are defined in terms of yc∗

t = y∗t − µ∗1t. Furthermore, let Sc
ij (i, j = 0, 1)

be the moment matrices based on the original observations adjusted by the trend component,

i.e yc
t = yt − µ1t. Finally, define β̃+ = (β̃′,−θ∗)′.

In order to proof Proposition 1 we follow Johansen (1995, Ch. 11). Thus, we need corre-

sponding results to Lemma 2 and 3 of Swensen (2005a) with respect to model (A.40). To this

end, we consider first the following lemma.

Lemma A5. Under Assumptions 1 and 2, we have

S̃c∗
00

p→ Σc
00

S̃c∗
01β̃

+ p→ Σc
0β

β̃+′S̃c∗
11β̃

+ p→ Σc
ββ,

where Σc
00, Σc

0β , and Σββc are the respective probability limits of Sc
00, Sc

01β
+, and β+′Sc

11β
+

with respect to the original observations as T →∞. ¤

Proof We first prove that S̃c∗
00

p∗→ Sc∗
00, S̃c∗

01β̃
+ p∗→ Sc∗

01β̃
+, and β̃+′S̃c∗

11β̃
+ p∗→ β̃+′Sc∗

11β̃
+. Hence,

conditional on the observations, the use of the estimator µ̂∗1 instead of µ∗1 for the bootstrap

data adjustment has no asymptotic impact on the properties of the product moment matrices

of interest. Then, Lemma A5 follows from Lemma 2 of Swensen (2005a) in connection with

Lemma 1 above.

Using the definitions stated before Lemma A5, we can write in accordance with Johansen

(1995, Ch. 6)

S̃c∗
00 = (T − p)−1




T∑
t=p+1

Z̃c∗
0t Z̃

c∗′
0t −

T∑
t=p+1

Z̃c∗
0t Z̃

c∗′
2t

(
T∑

t=p+1

Z̃c∗
2t Z̃

c∗′
2t

)−1 T∑
t=p+1

Z̃c∗
2t Z̃

c∗′
0t




S̃c∗
01β̃

+ = (T − p)−1




T∑
t=p+1

Z̃c∗
0t Z̃

c∗′
1t −

T∑
t=p+1

Z̃c∗
0t Z̃

c∗′
2t

(
T∑

t=p+1

Z̃c∗
2t Z̃

c∗′
2t

)−1 T∑
t=p+1

Z̃c∗
2t Z̃

c∗′
1t


 β̃+

β̃+′S̃c∗
11β̃

+ = (T − p)−1β̃+′




T∑
t=p+1

Z̃c∗
1t Z̃

c∗′
1t −

T∑
t=p+1

Z̃c∗
1t Z̃

c∗′
2t

(
T∑

t=p+1

Z̃c∗
2t Z̃

c∗′
2t

)−1 T∑
t=p+1

Z̃c∗
2t Z̃

c∗′
1t


β̃+.

Note that
∑T

t=p+1 Z̃c∗
0t Z̃

c∗′
0t =

∑T
t=p+1[Z

c∗
0t − (µ̂∗1− µ∗1)][Z

c∗
0t − (µ̂∗1− µ∗1)]

′, where Zc∗
0t = ∆yc∗

t is

a zero-mean stationary process with respect to the measure P ∗
r0,T according to Lemma 1. Using

Lemma A4 and Johansen (1995, Theorem B.13), we have
∑T

t=p+1 Z̃c∗
0t Z̃

c∗′
0t =

∑T
t=p+1 Zc∗

0t Z
c∗′
0t +
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O∗
p(1). Similarly,

∑T
t=p+1 Z̃c∗

0t Z̃
c∗′
2t =

∑T
t=p+1 Zc∗

0t Z
c∗′
2t + O∗

p(1) and
∑T

t=p+1 Z̃c∗
2t Z̃

c∗′
2t =

∑T
t=p+1 Zc∗

2t Z
c∗′
2t + O∗

p(1) are obtained. Combining these results, yields

S̃c∗
00 =(T − p)−1




T∑
t=p+1

Zc∗
0t Z

c∗′
0t −

T∑
t=p+1

Zc∗
0t Z

c∗′
2t

(
T∑

t=p+1

Zc∗
2t Z

c∗′
2t

)−1 T∑
t=p+1

Zc∗
2t Z

c∗′
0t


+o∗p(1)

= Sc∗
00 + o∗p(1).

Moreover,
∑T

t=p+1 Z̃c∗
0t Z̃

c∗′
1t β̃+ =

∑T
t=p+1[Z

c∗
0t − (µ̂∗1 − µ∗1)][Z

c∗
1t − {(µ̂∗1 − µ∗1)

′(t− 1) : 0}′]′β̃+.

Note that β̃+′Zc∗
1t = β̃′yc∗

t−1 − θ∗ is also a zero-mean stationary process with respect to the

measure P ∗
r0,T . Again, we refer to Lemma A4 and Johansen (1995, Theorem B.13) to con-

clude that
∑T

t=p+1 Z̃c∗
0t Z̃

c∗′
1t β̃+ =

∑T
t=p+1 Zc∗

0t Z
c∗′
1t β̃+ + O∗

p(1). In a similar fashion, we ob-

tain
∑T

t=p+1 Z̃c∗
2t Z̃

c∗′
1t β̃+ =

∑T
t=p+1 Zc∗

2t Z
c∗′
1t β̃+ + O∗

p(1) such that, together with the results

found above, S̃c∗
01β̃

+ = Sc∗
01β̃

+ + o∗p(1) can be deduced. By an analogous argumentation,
∑T

t=p+1 β̃+′Z̃c∗
1t Z̃

c∗′
1t β̃+ =

∑T
t=p+1 β̃+′Zc∗

1t Z
c∗′
1t β̃+ + O∗

p(1) can be shown. Using this, we fi-

nally find β̃+′S̃c∗
11β̃

+ = β̃+′Sc∗
11β̃

+ + o∗p(1), what completes the proof of Lemma A5. ¤

As an intermediate step in deriving the distributional properties of the relevant quantities we

first show

Lemma A6. Under Assumptions 1 and 2, we have

(T − p)−1B̃′
T S̃c∗

11B̃T
p∗→ (T − p)−2B̃′

T

T∑
t=p+1

Z̃c∗
1t Z̃

c∗′
1t B̃T (A.41)

B̃′
T S̃c∗

10α̃⊥
p∗→ (T − p)−1B̃′

T

T∑
t=p+1

Z̃c∗
1t ε̄

c∗′
t α̃⊥ (A.42)

where B̃T =


β̃⊥ 0

0 T 1/2


 and ε̄c∗

t = ε∗t − Γ̃β̃⊥
¯̃β′⊥(µ̂∗1 − µ∗1). ¤

Proof The estimation error with respect to µ̂∗1 does not vanish on the r.h.s. of (A.41) because

β̃′⊥(µ̂∗1 − µ∗1) = O∗
p(T

−1/2) in contrast to β̃′(µ̂∗1 − µ∗1) = O∗
p(T

−3/2) according to Lemma A4.

Thus, we only have to show that

(T − p)−2

T∑
t=p+1

B̃′
T Z̃c∗

1t Z̃
c∗′
2t

(
T∑

t=p+1

Z̃c∗
2t Z̃

c∗′
2t

)−1 T∑
t=p+1

Z̃c∗
2t Z̃

c∗′
1t B̃T

p∗→ 0. (A.43)

Note that β̃′⊥yc∗
t−1 equals a zero-mean process plus a bounded term with respect to the measure

P ∗
r0,T . This follows from the definition of τ ∗0 in Lemma 1 and

√
TRc∗

t,T in (A.10). Then, using
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the results of Lemmas 1 and A4 in connection with Theorem B.13 of Johansen (1995) we find

that
∑T

t=p+1 Z̃c∗
2t Z̃

c∗′
2t = O∗

p(T ),
∑T

t=p+1 β̃′⊥ŷc∗
t−1Z̃

c∗′
2t = O∗

p(T ), and
∑T

t=p+1 Z̃c∗′
2t = O∗

p(T
1/2).

Combining the latter two results yields
∑T

t=p+1 B̃′
T Z̃c∗

1t Z̃
c∗′
2t = O∗

p(T ) and (A.43) follows, which

implies (A.41).

In line with Johansen (1995, p. 91) we can write S̃c∗
10α̃⊥ = (T−p)−1

∑T
t=p+1 R̃c∗

1t(α̃β̃+′R̃c∗
1t +

ε̃c∗
t )′α̃⊥ = (T − p)−1

∑T
t=p+1 R̃c∗

1t ε̃
c∗′
t α̃⊥, where ε̃c∗

t = R̃c∗
0t − α̃β̃+′R̃c∗

1t . Given the derivations

used in Johansen (1995, pp. 90-91) and our notation with respect to the VEC model (A.40)

it is straightforward to show that ε̃c∗
t = ec∗

t

(
I − Z̃c∗′

2t

(∑T
t=p+1 Z̃c∗

2t Z̃
c∗′
2t

)−1

Z̃c∗
2t

)
and R̃c∗

1t =

Z̃c∗
1t −

∑T
t=p+1 Z̃c∗

1t Z̃
c∗′
2t

(∑T
t=p+1 Z̃c∗

2t Z̃
c∗′
2t

)−1

Z̃c∗
2t . Using these expressions, we have

S̃c∗
10α̃⊥ = (T − p)−1




T∑
t=p+1

Z̃c∗
1t e

c∗′
t −

T∑
t=p+1

Z̃c∗
1t Z̃

c∗′
2t

(
T∑

t=p+1

Z̃c∗
2t Z̃

c∗′
2t

)−1 T∑
t=p+1

Z̃c∗
2t e

c∗′
t


 α̃⊥

Note again that ec∗
t = ε∗t + α̃β̃′(µ̂∗1 − µ∗1)(t − 1) − Γ̃(µ̂∗1 − µ∗1). Then, by Lemmas 1 and 4

together with Johansen (1995, Theorem B.13),
∑T

t=p+1 Z̃c∗
2t e

c∗′
t α̃⊥ = O∗

p(T
1/2). Combining

this with
∑T

t=p+1 B̃′
T Z̃c∗

1t Z̃
c∗′
2t = O∗

p(T ) and
∑T

t=p+1 Z̃c∗
2t Z̃

c∗′
2t = O∗

p(T ) shows that B̃′
T S̃c∗

10α̃⊥ =

(T − p)−1
∑T

t=p+1 B̃′
T Z̃c∗

1t e
c∗′
t α̃⊥ + o∗p(1).

As in case of (A.41), the estimation error regarding µ̂∗1 does not vanish in B̃′
T S̃c∗

10α̃⊥ =

(T −p)−1
∑T

t=p+1 B̃′
T Z̃c∗

1t e
c∗′
t α̃⊥. However, we can write this expression more explicitly by not-

ing that ec∗′
t α̃⊥ = {ε∗t − Γ̃[β̃(β̃′β̃)−1β̃′ + β̃⊥(β̃′⊥β̃⊥)−1β̃′⊥](µ̂∗1 − µ∗1)}′α̃⊥. Since β̃′(µ̂∗1 − µ∗1) =

O∗
p(T

−3/2), we obtain B̃′
T S̃c∗

10α̃⊥ = (T − p)−1
∑T

t=p+1 B̃′
T Z̃c∗

1t [ε
∗
t − Γ̃β̃⊥(β̃′⊥β̃⊥)−1β̃′⊥(µ̂∗1 −

µ∗1)]
′α̃⊥ + o∗p(1), what shows (A.42) and completes the proof of Lemma A6. ¤

We can now state

Lemma A7. Under Assumptions 1 and 2,

(T − p)−1B̃′
T S̃c∗

11B̃T →
∫ 1

0

G+(s)G+(s)′ds (A.44)

B̃′
T S̃c∗

10α̃⊥ →
∫ 1

0

G+(s)dG∗(s)′α⊥, (A.45)

where G+(s) = [B∗(s)′Ω1/2C ′β⊥, 1]′, dG∗(s) = Ω1/2dB∗(s), and convergence is weakly in

Pr0,T probability. ¤

Proof We can exactly argue as in Swensen (2005a, Proof of Lemma 3). Our proof also relies

on the continuous mapping theorem involving the same functionals as in Saikkonen et al. (2006)
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and related work by Lütkepohl & Saikkonen (2000) and Hansen & Johansen (1998, pp. 118-

121). Thus, analogous to Swensen (2005a), we only have to show that the process {(T −
p)−1/2yc∗

[sT ], 0 ≤ s ≤ 1} converges weakly in Pr0,T probability as element in D[0, 1]n.

From Lemma 1 we see, that the remainder term Rc∗
t,T vanishes asymptotically. The constant

term is treated as in Saikkonen et al. (2006). A more detailed description of this treatment in

relation to the Johansen test can be found in Hansen & Johansen (1998, pp. 118-121). Therefore,

we only have to analyse S∗T (s) = (T − p)−1/2
∑[sT ]

i=p+1 ε∗i . This is the same partial sum analysed

by Swensen (2005a) except that the our bootstrap residuals are based on Algorithm 1 and not

on Algorithm 2. However, according to Swensen (2005a, Remark 9) this does not change the

asymptotic results.

Hence, following the arguments of Swensen (2005a), convergence in Pr0,T probability

is obtained by using the approach of Pollard (1984, Theorem V.19). It can be shown that

E∗[f(S∗T )] → E[f(W )] in Pr0,T probability for all bounded continuous functions f defined

on D[0, 1]n, the space of functions that are right continuous and have left limits. Thus, S∗T

converges weakly in Pr0,T probability to a Brownian motion W with covariance matrix Ω. Fur-

thermore, note that the estimators β̃⊥, α̃⊥, and Γ̃ involved in the l.h.s. of (A.44) and (A.45)

are consistent in terms of the measure Pr0,T (compare e.g. Johansen 1995). Moreover, we have

B̃′
T Z̃c∗

1t = {[β̃′⊥yc∗
t−1 − β̃′⊥(µ̂∗1 − µ∗1)(t − 1)]′, T 1/2}′. Then, given the consideration of the (re-

stricted) constant term as in Saikkonen et al. (2006) or Hansen & Johansen (1998, pp. 118-121),

Lemma A7 follows from the relationship of the functionals on the r.h.s. of (A.41) and (A.42)

with those in equations (A.10)/(A.11) and (A.14)/(A.15) of Lütkepohl & Saikkonen (2000).

Note in this respect that the estimator µ̃1 used in Lütkepohl & Saikkonen (2000) and µ̂1 have

the same asymptotic properties. Thus, the asymptotic properties of µ̂∗1 also correspond to those

of µ̃1 in Lütkepohl & Saikkonen (2000). ¤

Finally, Proposition 1 follows from Lemmas A5 and A7 in the same way as in Johansen

(1995, Ch. 11) and Saikkonen et al. (2006) with obvious modifications (compare Swensen

2005a). ¤

Proof of Proposition 2

We now prove Proposition 2. First, we need
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Lemma A8. Under Assumptions 1 and 3, we have

β̃′(µ̃∗0 − µ∗0) = O∗
p(T

−1/2) (A.46)

β̃′⊥(µ̃∗0 − µ∗0) = O∗
p(1) (A.47)

β̃′(µ̃∗1 − µ∗1) = O∗
p(T

−3/2) (A.48)

(T − p)−1/2β̃′⊥(µ̃∗1 − µ∗1)
d∗→ N(0, β̃′⊥C̃Ω̃C̃ ′β̃⊥) (A.49)

¤

Proof First, it is shown that Lemma A8 holds if β̃ and β̃⊥ are replaced by β̃∗ and β̃∗⊥. Then, the

lemma follows from (A.12). Thus, we consider the following two sets of quantities: θ∗ = β̃∗′µ∗0,

θ∗∗ = β̃∗′⊥µ∗0, τ ∗ = β̃∗′µ∗1, τ ∗∗ = β̃∗′⊥µ∗1 and θ∗ = β̃′µ∗0, θ∗∗ = β̃′⊥µ∗0, τ ∗ = β̃′µ∗1, τ ∗∗ = β̃′⊥µ∗1. The

second set can be regarded as the real parameters conditional on the observations and the first

set comprises the analogs of the real parameters that are considered first.

The estimators θ̃∗, θ̃∗∗, τ̃ ∗, and τ̃ ∗∗ are obtained by LS estimation of

Q̃∗′Ã∗(L)y∗t = Q̃∗′H̃∗
0tβ̃

∗(β̃∗′β̃∗)−1θ∗ + Q̃∗′H̃∗
0tβ̃

∗
⊥(β̃∗′⊥ β̃∗⊥)−1θ∗∗

+ Q̃∗′H̃∗
1tβ̃

∗(β̃∗′β̃∗)−1τ ∗ + Q̃∗′H̃∗
1tβ̃

∗
⊥(β̃∗′⊥ β̃∗⊥)−1τ ∗∗ + η̃∗t , t = 1, . . . , T,

(A.50)

which is a rewritten version of (4.10). For the error terms we have η̃∗t = Q̃∗′n∗t = Q̃∗′(ε∗t −
(α̃∗β̃∗′ − α̃β̃′)x∗t−1 −

∑p−1
j=1(Γ̃

∗
j − Γ̃j)∆x∗t−j) corresponding to (A.4) in Saikkonen & Lütkepohl

(1997), which is the discussion paper version of Saikkonen & Lütkepohl (2000b).

The definition of H̃∗
0t leads to H̃∗

0tβ̃
∗
⊥(β̃∗′⊥ β̃∗⊥)−1 = 0 for t ≥ p + 1. Corresponding to

Lütkepohl & Saikkonen (1997, Proof of Lemma 2), which is the discussion paper version of

Lütkepohl & Saikkonen (2000), this implies that the appropriately standardized moment matrix

related to the LS estimator θ̃∗∗ is asymptotically block diagonal. For the upper left block we have

p∑
t=1

(β̃∗′⊥ β̃∗⊥)−1β̃∗′⊥H̃∗′
0tΩ̃

∗−1H̃∗
0tβ̃

∗
⊥(β̃∗′⊥ β̃∗⊥)−1 =

p∑
t=1

(β̃′⊥β̃⊥)−1β̃′⊥H̃ ′
0tΩ̃

−1H̃0tβ̃⊥(β̃′⊥β̃⊥)−1 + o∗p(1)

owing to Lemma A1. Following the argumentation in Lütkepohl & Saikkonen (1997, Proof

of Lemma 2), we see that this block is positive definite given the definition of H̃0t and the

requirement within bootstrap Algorithm 1 that α̃′⊥Γ̃β̃⊥ is nonsingular. The lower right block in

the standardized moment matrix related to the LS estimator θ̃∗∗ is asymptotically nonsingular as

will become evident from the explanations below in connection with Saikkonen & Lütkepohl

(1997, Proof of Theorem 1). Furthermore,
∑p

t=1(β̃
∗′
⊥ β̃∗⊥)−1β̃∗′⊥H̃∗′

0tΩ̃
∗−1n∗t is bounded in P ∗

r0,T

probability. This follows from the definition of n∗t above and the definition of ε∗1, . . . , ε
∗
p in
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(4.12). Finally, the standardized sample moments of the other regressors and the error terms

are also bounded in P ∗
r0,T probability. Again, this will be seen from the descriptions below and

Saikkonen & Lütkepohl (1997, Proof of Theorem 1). Hence, it follows that

θ̃∗∗ = β̃∗′⊥ µ̃∗0 = β̃∗′⊥µ∗0 + O∗
p(1) = θ∗∗ + O∗

p(1),

which implies (A.47).

Following the above arguments it is straightforward to see that θ̃∗∗ has no effect on the asymp-

totic properties of θ̃∗, τ̃ ∗, and τ̃ ∗∗ conditional on the observations. Therefore, we can focus on

the estimation of θ∗, τ ∗, τ ∗∗ and ignore the first p (bootstrap) observations in (A.50). Then, the

proof of (A.46), (A.48), and (A.49) follows exactly the structure of the proof of Theorem 1 in

Saikkonen & Lütkepohl (2000b) and Saikkonen & Lütkepohl (1997), which deal with the cor-

responding properties of the estimators of the deterministic parameters in the asymptotic test

set-up. To be precise, by conditioning on the observation we are able to replicate the proof

of Saikkonen & Lütkepohl (2000b) for the bootstrap quantities since they take the role of the

observations. Thus, we have to replace a number of quantities with their bootstrap counter-

parts in the proof by Saikkonen & Lütkepohl (2000b) and consider now convergence in P ∗
r0,T

probability. This is analogous to the proof of Lemma A4. The following rules apply. The boot-

strap series y∗t , x∗t and the adjusted series x̃∗t are used instead of yt, xt, and x̃t. Moreover, the

true parameters are replaced by their estimators regarding the observations and the latter ones

are interchanged with the estimators based on the pseudo data. Finally, the considered error

terms have to be redefined accordingly in terms of the quantities which refer to the bootstrap

framework, i.e. η̃∗t defined above is used instead of η̃t, which occur in (2.7). In addition, we

conclude from Lemma 2 that β̃′x∗t and ∆x∗t are zero mean stationary processes with respect to

the measure P ∗
r0,T and that the random process S∗T (s) = 1/

√
T

∑[sT ]
i=k+1 ε∗i , 0 ≤ s ≤ 1 converges

in P ∗
r0,T distributions toward a n-dimensional Brownian motion with covariance matrix Ω̃.

Adjusting the proof of Theorem 1 in Saikkonen & Lütkepohl (2000b) and Saikkonen &

Lütkepohl (1997) in the aforementioned way gives first

θ̃∗ = θ∗ + O∗
p(T

−1/2)

τ̃ ∗ = τ ∗ + O∗
p(T

−3/2)

(T − p)−1/2(τ̃ ∗∗ − τ ∗∗) = β̃∗′⊥C̃∗(T − p)−1/2

T∑
t=p+1

n∗t + o∗p(1)

= β̃′⊥C̃(T − p)−1/2

T∑
t=p+1

ε∗t + o∗p(1)
d∗→ N(0, β̃′⊥C̃Ω̃C̃ ′β̃⊥).

(A.51)

46



The latter result is obtained by Lemma 2, Lemma A.1, and the definition of n∗t . Note again

that β̃′⊥x∗t does not have a zero mean asymptotically because x∗p is not a consistent estimator

of xp in the direction of β̃⊥. However, the estimation error is bounded. Inspecting the deriva-

tions in Saikkonen & Lütkepohl (2000b) and Saikkonen & Lütkepohl (1997), it is seen that

this is sufficient to assure that the required standardized sample moments are all bounded in

P ∗
r0,T probability. Accordingly, we obtain (A.51). Then, (A.46), (A.48), and (A.49) follow from

(A.51) by applying Lemma A.1 as mentioned above. This completes the proof of Lemma A8. ¤

Given Lemma A8 we can base the GLS∗1 test on the VECM (4.13) for the adjusted bootstrap

series x̃∗t = y∗t−µ̃∗0−µ̃∗1t with e∗t = ε∗t−α̃β̃′(x̃∗t−1−x∗t−1)(t−1)+∆x̃∗t−∆x∗t−
∑p−1

j=1 Γ̃j(∆x̃∗t−j−
∆x∗t−j) = ε∗t + α̃β̃′(µ̃∗0 − µ∗0) + α̃β̃′(µ̃∗1 − µ∗1)(t− 1) − Γ̃(µ̃∗1 − µ∗1). Thus, we need analogous

versions of Lemmas A5-A7 in relation to (4.13). To this end, we define the following quantities.

Let Z̃x∗
0t = ∆x̃∗t , Z̃x∗

1t = x̃∗t−1, and Z̃x∗
2t = (∆x̃∗′t−1, . . . , ∆x̃∗′t−p+1)

′. Then, regress Z̃x∗
0t and Z̃x∗

1t on

Zx∗
2t to obtain the residuals R̃x∗

0t and R̃x∗
1t , respectively. Using these residuals we have

S̃x∗
ij = (T − p)−1

T∑
t=p+1

R̃x∗
it R̃x∗′

jt i, j = 0, 1.

Similarly, we obtain the moment matrices Sx∗
ij (i, j = 0, 1) from Zx∗

0t , Zx∗
1t , Zx∗

2t , Rx∗
0t , and Rx∗

1t ,

which are defined in terms of x∗t = y∗t − µ∗0 − µ∗1t. Furthermore, let Sx
ij (i, j = 0, 1) be the

moment matrices based on the original observations adjusted by the level term and trend com-

ponent, i.e based on xt = yt − µ0 − µ1t.

Lemma A9. Under Assumptions 1 and 3, we have

S̃x∗
00

p→ Σx
00

S̃x∗
01 β̃+ p→ Σx

0β

β̃′S̃x∗
11 β̃

p→ Σx
ββ,

where Σx
00, Σx

0β , and Σx
ββ are the respective probability limits of Sx

00, Sx
01β, and β′Sx

11β with

respect to the original observations as T →∞. ¤

Proof The proof is analog to the one of Lemma A5. First, one has to show that S̃x∗
00

p∗→ Sx∗
00 ,

S̃x∗
01 β̃

p∗→ Sx∗
01 β̃, and β̃′S̃x∗

11 β̃
p∗→ β̃′Sx∗

11 β̃. These results are again proven by writing S̃x∗
00 , S̃x∗

01 β̃,

and β̃′S̃x∗
11 β̃ in terms of Z̃x∗

0t , Z̃x∗
1t , and Z̃x∗

2t . Then, use Lemma 2, Lemma A8 and Johansen

(1995, Theorem B.13). Note in this respect that Zx∗
0t , Zx∗

2t , and β̃′Zx∗
1t are zero-mean stationary
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processes with respect to the measure P ∗
r0,T given Lemma 2 and the definition of

√
TR0∗

t,T in

(A.9). Finally, it follows from of Swensen (2005a, Lemma 2) in connection with Lemma 2 that

Sx∗
00 , Sx∗

01 β̃, and β̃′Sx∗
11 β̃ converge to Σx

00, Σx
0β , and Σx

ββ in Pr0,T probability. ¤

Lemma A10. Under Assumptions 1 and 3, we have

(T − p)−1β̃′⊥S̃x∗
11 β̃⊥

p∗→ (T − p)−2β̃′⊥

T∑
t=p+1

w∗
t−1w

∗′
t−1β̃⊥ (A.52)

β̃′⊥S̃x∗
10 α̃⊥

p∗→ (T − p)−1β̃′⊥

T∑
t=p+1

w∗
t−1ε̄

∗′
t α̃⊥ (A.53)

where w∗
t−1 = x∗t−1 − (µ̃∗1 − µ∗1)(t− 1) and ε̄∗t = ε∗t − Γ̃β̃⊥

¯̃β′⊥(µ̃∗1 − µ∗1). ¤

Proof Note that β̃′⊥x∗t−1 is a zero-mean process plus a bounded term with respect to the mea-

sure P ∗
r0,T in line with Lemma 2 because β̃′⊥x∗p = O∗(1). Then, using Lemma 2, Lemma A8, and

Theorem B.13 of Johansen (1995) we get (T−p)−1β̃′⊥S̃x∗
11 β̃⊥

p∗→ (T−p)−2
∑T

t=p+1 β̃′⊥Z̃x∗
1t Z̃x∗′

1t β̃⊥

corresponding to (A.41). Finally, (A.52) follows by applying (A.47) and (A.49) to (T −
p)−2

∑T
t=p+1 β̃′⊥Z̃x∗

1t Z̃x∗′
1t β̃⊥ since β̃′⊥Z̃x∗

1t = β̃′⊥x̃∗t−1 = β̃′⊥x∗t−1−β̃′⊥(µ̃∗0−µ∗0)−β̃′⊥(µ̃∗1−µ∗1)(t−1).

Analogously to (A.42), we first have β̃′⊥S̃x∗
10 α̃⊥

p∗→ (T −p)−1β̃′⊥
∑T

t=p+1 Z̃x∗
1t ε̄∗′t α̃⊥ by taking

into account the obvious modifications due to the fact that now the VECM (4.13) is consid-

ered instead of (A.40). Furthermore, we make use of (T − p)−1
∑T

t=p+1 β̃′⊥(µ̃∗0 − µ∗0)ε̄
∗′
t α̃⊥ =

(T − p)−1β̃′⊥(µ̃∗0−µ∗0)
∑T

t=p+1

(
ε∗′t α̃⊥ + β̃′⊥(µ̃∗0 − µ∗0)(µ̃

∗
1 − µ∗1)

′β̃′⊥
¯̃β⊥Γ̃′α̃⊥

)
= o∗p(1) obtained

from Lemmas 2, A1, and A8. Connecting this result with the conditional limit expression for

β̃′⊥S̃x∗
10 α̃⊥ and the definition of Z̃x∗

1t gives (A.53). This completes the proof of Lemma A10. ¤

Finally, we turn to the analog of Lemma A7 for the GLS∗1 test.

Lemma A11. Under Assumptions 1 and 3,

(T − p)−1β̃′⊥S̃x∗
11 β̃⊥ →

∫ 1

0

G∗(s)G∗(s)′ds

β̃′⊥S̃x∗
10 α̃⊥ →

∫ 1

0

G∗(s)dG∗(s)′α⊥,

where G∗(s) = β′⊥CΩ1/2B∗(s), dG∗(s) = Ω1/2dB∗(s), and convergence is weakly in Pr0,T

probability. ¤
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Proof Lemma A12 can be proven following the argumentation related to the proof of Lemma

A7. Now, we consider the process {(T − p)−1/2x∗[sT ], 0 ≤ s ≤ 1} and refer to Lemma 2. From

the proof of the latter we see that also the remainder term R0∗
t,T vanishes asymptotically since

the estimation error related to β̃′⊥x∗p is bounded in Pr0,T probability. Moreover, the functionals

on the r.h.s. of (A.52) and (A.53) correspond exactly to the ones in equations (A.10)/(A.11) and

(A.14)/(A.15) of Lütkepohl & Saikkonen (2000) since we do not have to consider a constant

term in the VECM (4.13). Thus, Lemma A11 will hold. ¤

Finally, Proposition 2 follows given Lemmas A9 and A11. As for showing Proposition 1, we

refer to the proof approach in Johansen (1995, Ch. 11) performing the necessary modifications

due to the bootstrap framework (compare Swensen 2005a) and due to specific characteristics of

the GLS testing framework (see Saikkonen & Lütkepohl 2000b and the derivations above). ¤

In line with Swensen (2005a) the limiting results of Propositions 1 and 2 also hold if the

bootstrap Algorithm 2 is used. As mentioned in Section 4, the residuals and estimators for the

short-run parameters are taken from an estimated unrestricted VAR model in first differences.

Accordingly, the conditions (4.2), Assumptions 2 and 3, and Lemmas 1 and 2 are modified.

A careful inspection of Lemmas A1-A11 and their proofs shows that the derivations are also

valid in terms of SLT ∗
2 (r0) and GLS∗2(r0) with obvious adjustments. Hence, it can be shown

that SLT ∗
2 (r0) and GLS∗2(r0) converge to the same limiting distributions in Pr0,T probability as

SLT ∗
1 (r0) and GLS∗1(r0) respectively.

Appendix B: Response Surface for the SLT-Test

The response surface for the SLT test by Saikkonen et al. (2006) is computed exactly in the

same way as the one for the GLS test, which is presented in Trenkler (2004). The idea of the

response surface is to approximate the limiting distribution given in Theorem 1 by a Gamma

distribution with two parameters. These parameters can be related to the mean and variance of

the distribution of interest. Therefore, the aim of the response surface simulations is to compute

the mean and variance for discrete realizations of the limit distribution of SLT . To this end,

we consider different sample sizes T and dimensions d = n− r0. These simulated realizations

are based on random walks, which are the discrete counterparts of Brownian motions. The

dependency of the mean and variance on the sample size T is used to estimate the asymptotic

moments for T → ∞. Thus, we only need to present response surface coefficients with re-
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Table 6. Response Surface for Mean and Variance of Asymptotic Distribution of the Trace Test
Statistics SLT (r0)

Mean Variance
d2 2.0046 3.0125

d 1.7392 1.9664√
d 1.0027 —

1 (constant) −0.5442 1.4214

spect to the dimension d in order to estimate the asymptotic mean and variance of the relevant

distributions. These coefficients are given in Table 6 and refer to polynomials of d. The calcu-

lated moments are then used to fit an approximating Gamma distribution, which can be used to

compute p-values or arbitrary quantiles. Further details can be found in Trenkler (2004).
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